161 research outputs found

    Imagination Based Sample Construction for Zero-Shot Learning

    Full text link
    Zero-shot learning (ZSL) which aims to recognize unseen classes with no labeled training sample, efficiently tackles the problem of missing labeled data in image retrieval. Nowadays there are mainly two types of popular methods for ZSL to recognize images of unseen classes: probabilistic reasoning and feature projection. Different from these existing types of methods, we propose a new method: sample construction to deal with the problem of ZSL. Our proposed method, called Imagination Based Sample Construction (IBSC), innovatively constructs image samples of target classes in feature space by mimicking human associative cognition process. Based on an association between attribute and feature, target samples are constructed from different parts of various samples. Furthermore, dissimilarity representation is employed to select high-quality constructed samples which are used as labeled data to train a specific classifier for those unseen classes. In this way, zero-shot learning is turned into a supervised learning problem. As far as we know, it is the first work to construct samples for ZSL thus, our work is viewed as a baseline for future sample construction methods. Experiments on four benchmark datasets show the superiority of our proposed method.Comment: Accepted as a short paper in ACM SIGIR 201

    A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders

    Full text link
    Zero shot learning in Image Classification refers to the setting where images from some novel classes are absent in the training data but other information such as natural language descriptions or attribute vectors of the classes are available. This setting is important in the real world since one may not be able to obtain images of all the possible classes at training. While previous approaches have tried to model the relationship between the class attribute space and the image space via some kind of a transfer function in order to model the image space correspondingly to an unseen class, we take a different approach and try to generate the samples from the given attributes, using a conditional variational autoencoder, and use the generated samples for classification of the unseen classes. By extensive testing on four benchmark datasets, we show that our model outperforms the state of the art, particularly in the more realistic generalized setting, where the training classes can also appear at the test time along with the novel classes

    Open-Category Classification by Adversarial Sample Generation

    Full text link
    In real-world classification tasks, it is difficult to collect training samples from all possible categories of the environment. Therefore, when an instance of an unseen class appears in the prediction stage, a robust classifier should be able to tell that it is from an unseen class, instead of classifying it to be any known category. In this paper, adopting the idea of adversarial learning, we propose the ASG framework for open-category classification. ASG generates positive and negative samples of seen categories in the unsupervised manner via an adversarial learning strategy. With the generated samples, ASG then learns to tell seen from unseen in the supervised manner. Experiments performed on several datasets show the effectiveness of ASG.Comment: Published in IJCAI 201
    • …
    corecore