14 research outputs found

    Error Potentials for Brain-Computer Interfaces

    Get PDF
    The idea to use EEG correlates of errors to correct or reinforce BCI operation has been proposed over a decade ago. Since then a body of evidence has corroborated this approach. In this paper we give an overview of our recent work exploring the possibilities of error-potential applications, involving removing constraints of laboratory paradigms to increase “real-life” validity, and investigating EEG feature-spaces to increase detection robustness

    Latency correction of error-related potentials reduces BCI calibration time

    Get PDF
    Calibration of brain-machine interfaces exploiting event-related potentials has to be performed for each experimental paradigm. Even if these signals have been used in previous experiments with different protocols. We show that use of signals from previous experiments can reduce the calibration time for single-trial classification of error-related potentials. Compensating latency variations across tasks yield up to a 50% reduction the training period in new experiments without decrease in online performance compared to the standard training

    Decoding Fast-Paced Error-Related Potentials in Monitoring Protocols

    Get PDF
    Error-related EEG potentials (ErrP) can be used for brain-machine interfacing (BMI). Decoding of these signals, indicating subject's perception of erroneous system decisions or actions can be used to correct these actions or to improve the overall interfacing system. Multiple studies have shown the feasibility of decoding these potentials in single-trial using different types of experimental protocols and feedback modalities. However, previously reported approaches are limited by the use of long inter-stimulus intervals (ISI>2s). In this work we assess if it is possible to overcome this limitation. Our results show that it is possible to decode error-related potentials elicited by stimuli presented with ISIs lower than 1s without decrease in performance. Furthermore, the increase in the presentation rate did not increase the subject workload. This suggests that the presentation rate for ErrP-based BMI protocols using serial monitoring paradigms can be substantially increased with respect to previous works

    Using frequency-domain features for the generalization of EEG error-related potentials among different tasks

    Get PDF
    EEG brain-computer interfaces (BCI) require a calibration phase prior to the on-line control of the device, which is a difficulty for the practical development of this technology as it is user-, session- and task-specific. The large body of research in BCIs based on event-related potentials (ERP) use temporal features, which have demonstrated to be stable for each user along time, but do not generalize well among tasks different from the calibration task. This paper explores the use of low frequency features to improve the generalization capabilities of the BCIs using error-potentials. The results show that there exists a stable pattern in the frequency domain that allows a classifier to generalize among the tasks. Furthermore, the study also shows that it is possible to combine temporal and frequency features to obtain the best of both domains

    Spatial filters yield stable features for error-related potentials across conditions

    Get PDF
    Error-related potentials (ErrP) have been increasingly studied in psychophysical experiments as well as for brain-machine interfacing. In the latter case, the generalisation capabilities of ErrP decoders is a crucial element to avoid frequent recalibration processes, thus increasing their usability. Previous studies have suggested that ErrP signals are rather stable across recording sessions. Also, studies using protocols of serial stimuli presentation show that these potentials do not change significantly with the presentation rate. Here we complement these studies by analysing the decoding generalisation capabilities. Using data from monitoring experiments, we evaluate how much the performance degrades when tested in a condition different than the one the decoder was trained with. Moreover, we compare different spatial filtering techniques to see which preprocessing steps yield less-sensitive features for ErrP decoding

    Shared-control brain-computer interface for a two dimensional reaching task using EEG error-related potentials

    Get PDF
    One of the main problems of EEG-based brain computer interfaces (BCIs) is their low information rate, thus for complex tasks the user needs large amounts of time to solve the task. In an attempt to reduce this time and improve the application robustness, recent works have explored shared-control strategies where the device does not only execute the decoded commands, but it is also involved in executing the task. This work proposes a shared-control BCI using error potentials for a 2D reaching task with discrete actions and states. The proposed system has several interesting properties: the system is scalable without increasing the complexity of the user's mental task; the interaction is natural for the user, as the mental task is to monitor the device performance to promote its task learning (in this context the reaching task); and the system has the potential to be combined with additional brain signals to recover or learn from interaction errors. Online control experiments were performed with four subjects, showing that it was possible to reach a goal location from any starting point within a 5Ă—5 grid in around 23 actions (about 19 seconds of EEG signal), both with fixed goals and goals freely chosen by the users

    Latency Correction of Error Potentials Between Different Experiments Reduces Calibration Time for Single-Trial Classification

    No full text
    Abstract — One fundamental limitation of EEG-based braincomputer interfaces is the time needed to calibrate the system prior to the detection of signals, due to the wide variety of issues affecting the EEG measurements. For event-related potentials (ERP), one of these sources of variability is the application performed: Protocols with different cognitive workloads might yield to different latencies of the ERPs. In this sense, it is still not clear the effect that these latency variations have on the single-trial classification. This work studies the differences in the latencies of error potentials across three experiments with increasing cognitive workloads. A delay-correction algorithm based on the cross-correlation of the averaged signals is presented, and tested with a single-trial classification of the signals. The results showed that latency variations exist between different protocols, and that it is feasible to re-use data from previous experiments to calibrate a classifier able to detect the signals of a new experiment, thus reducing the calibration time. I

    Errare machinale est: The use of error-related potentials in brain-machine interfaces

    Get PDF
    The ability to recognize errors is crucial for efficient behavior. Numerous studies have identified electrophysiological correlates of error recognition in the human brain (error-related potentials, ErrPs). Consequently, it has been proposed to use these signals to improve human-computer interaction (HCI) or brain-machine interfacing (BMI). Here, we present a review of over a decade of developments towards this goal. This body of work provides consistent evidence that ErrPs can be successfully detected on a single-trial basis, and that they can be effectively used in both HCI and BMI applications. We first describe the ErrP phenomenon and follow up with an analysis of different strategies to increase the robustness of a system by incorporating single-trial ErrP recognition, either by correcting the machine's actions or by providing means for its error-based adaptation. These approaches can be applied both when the user employs traditional HCI input devices or in combination with another BMI channel. Finally, we discuss the current challenges that have to be overcome in order to fully integrate ErrPs into practical applications. This includes, in particular, the characterization of such signals during real(istic) applications, as well as the possibility of extracting richer information from them, going beyond the time-locked decoding that dominates current approaches
    corecore