6,961 research outputs found

    Sprinklers: A Randomized Variable-Size Striping Approach to Reordering-Free Load-Balanced Switching

    Full text link
    Internet traffic continues to grow exponentially, calling for switches that can scale well in both size and speed. While load-balanced switches can achieve such scalability, they suffer from a fundamental packet reordering problem. Existing proposals either suffer from poor worst-case packet delays or require sophisticated matching mechanisms. In this paper, we propose a new family of stable load-balanced switches called "Sprinklers" that has comparable implementation cost and performance as the baseline load-balanced switch, but yet can guarantee packet ordering. The main idea is to force all packets within the same virtual output queue (VOQ) to traverse the same "fat path" through the switch, so that packet reordering cannot occur. At the core of Sprinklers are two key innovations: a randomized way to determine the "fat path" for each VOQ, and a way to determine its "fatness" roughly in proportion to the rate of the VOQ. These innovations enable Sprinklers to achieve near-perfect load-balancing under arbitrary admissible traffic. Proving this property rigorously using novel worst-case large deviation techniques is another key contribution of this work

    A unified approach to linear probing hashing with buckets

    Full text link
    We give a unified analysis of linear probing hashing with a general bucket size. We use both a combinatorial approach, giving exact formulas for generating functions, and a probabilistic approach, giving simple derivations of asymptotic results. Both approaches complement nicely, and give a good insight in the relation between linear probing and random walks. A key methodological contribution, at the core of Analytic Combinatorics, is the use of the symbolic method (based on q-calculus) to directly derive the generating functions to analyze.Comment: 49 page

    The supervised IBP: neighbourhood preserving infinite latent feature models

    Get PDF
    We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbourhood structure of the data in a sense that objects in the same semantic concept have similar latent values, and objects in different concepts have dissimilar latent values. We formulate the supervised infinite latent variable problem based on an intuitive principle of pulling objects together if they are of the same type, and pushing them apart if they are not. We then combine this principle with a flexible Indian Buffet Process prior on the latent variables. We show that the inferred supervised latent variables can be directly used to perform a nearest neighbour search for the purpose of retrieval. We introduce a new application of dynamically extending hash codes, and show how to effectively couple the structure of the hash codes with continuously growing structure of the neighbourhood preserving infinite latent feature space

    In-packet Bloom filters: Design and networking applications

    Full text link
    The Bloom filter (BF) is a well-known space-efficient data structure that answers set membership queries with some probability of false positives. In an attempt to solve many of the limitations of current inter-networking architectures, some recent proposals rely on including small BFs in packet headers for routing, security, accountability or other purposes that move application states into the packets themselves. In this paper, we consider the design of such in-packet Bloom filters (iBF). Our main contributions are exploring the design space and the evaluation of a series of extensions (1) to increase the practicality and performance of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security enhancements. In addition to the theoretical estimates, extensive simulations of the multiple design parameters and implementation alternatives validate the usefulness of the extensions, providing for enhanced and novel iBF networking applications.Comment: 15 pages, 11 figures, preprint submitted to Elsevier COMNET Journa
    • …
    corecore