688 research outputs found

    OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks

    Full text link
    Channel pruning can significantly accelerate and compress deep neural networks. Many channel pruning works utilize structured sparsity regularization to zero out all the weights in some channels and automatically obtain structure-sparse network in training stage. However, these methods apply structured sparsity regularization on each layer separately where the correlations between consecutive layers are omitted. In this paper, we first combine one out-channel in current layer and the corresponding in-channel in next layer as a regularization group, namely out-in-channel. Our proposed Out-In-Channel Sparsity Regularization (OICSR) considers correlations between successive layers to further retain predictive power of the compact network. Training with OICSR thoroughly transfers discriminative features into a fraction of out-in-channels. Correspondingly, OICSR measures channel importance based on statistics computed from two consecutive layers, not individual layer. Finally, a global greedy pruning algorithm is designed to remove redundant out-in-channels in an iterative way. Our method is comprehensively evaluated with various CNN architectures including CifarNet, AlexNet, ResNet, DenseNet and PreActSeNet on CIFAR-10, CIFAR-100 and ImageNet-1K datasets. Notably, on ImageNet-1K, we reduce 37.2% FLOPs on ResNet-50 while outperforming the original model by 0.22% top-1 accuracy.Comment: Accepted to CVPR 2019, the pruned ResNet-50 model has be released at: https://github.com/dsfour/OICS

    Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers

    Full text link
    Model pruning has become a useful technique that improves the computational efficiency of deep learning, making it possible to deploy solutions in resource-limited scenarios. A widely-used practice in relevant work assumes that a smaller-norm parameter or feature plays a less informative role at the inference time. In this paper, we propose a channel pruning technique for accelerating the computations of deep convolutional neural networks (CNNs) that does not critically rely on this assumption. Instead, it focuses on direct simplification of the channel-to-channel computation graph of a CNN without the need of performing a computationally difficult and not-always-useful task of making high-dimensional tensors of CNN structured sparse. Our approach takes two stages: first to adopt an end-to- end stochastic training method that eventually forces the outputs of some channels to be constant, and then to prune those constant channels from the original neural network by adjusting the biases of their impacting layers such that the resulting compact model can be quickly fine-tuned. Our approach is mathematically appealing from an optimization perspective and easy to reproduce. We experimented our approach through several image learning benchmarks and demonstrate its interesting aspects and competitive performance.Comment: accepted to ICLR 2018, 11 page

    Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure

    Full text link
    The redundancy is widely recognized in Convolutional Neural Networks (CNNs), which enables to remove unimportant filters from convolutional layers so as to slim the network with acceptable performance drop. Inspired by the linear and combinational properties of convolution, we seek to make some filters increasingly close and eventually identical for network slimming. To this end, we propose Centripetal SGD (C-SGD), a novel optimization method, which can train several filters to collapse into a single point in the parameter hyperspace. When the training is completed, the removal of the identical filters can trim the network with NO performance loss, thus no finetuning is needed. By doing so, we have partly solved an open problem of constrained filter pruning on CNNs with complicated structure, where some layers must be pruned following others. Our experimental results on CIFAR-10 and ImageNet have justified the effectiveness of C-SGD-based filter pruning. Moreover, we have provided empirical evidences for the assumption that the redundancy in deep neural networks helps the convergence of training by showing that a redundant CNN trained using C-SGD outperforms a normally trained counterpart with the equivalent width.Comment: CVPR 201

    Recent Advances in Efficient Computation of Deep Convolutional Neural Networks

    Full text link
    Deep neural networks have evolved remarkably over the past few years and they are currently the fundamental tools of many intelligent systems. At the same time, the computational complexity and resource consumption of these networks also continue to increase. This will pose a significant challenge to the deployment of such networks, especially in real-time applications or on resource-limited devices. Thus, network acceleration has become a hot topic within the deep learning community. As for hardware implementation of deep neural networks, a batch of accelerators based on FPGA/ASIC have been proposed in recent years. In this paper, we provide a comprehensive survey of recent advances in network acceleration, compression and accelerator design from both algorithm and hardware points of view. Specifically, we provide a thorough analysis of each of the following topics: network pruning, low-rank approximation, network quantization, teacher-student networks, compact network design and hardware accelerators. Finally, we will introduce and discuss a few possible future directions.Comment: 14 pages, 3 figure

    PruneNet: Channel Pruning via Global Importance

    Full text link
    Channel pruning is one of the predominant approaches for accelerating deep neural networks. Most existing pruning methods either train from scratch with a sparsity inducing term such as group lasso, or prune redundant channels in a pretrained network and then fine tune the network. Both strategies suffer from some limitations: the use of group lasso is computationally expensive, difficult to converge and often suffers from worse behavior due to the regularization bias. The methods that start with a pretrained network either prune channels uniformly across the layers or prune channels based on the basic statistics of the network parameters. These approaches either ignore the fact that some CNN layers are more redundant than others or fail to adequately identify the level of redundancy in different layers. In this work, we investigate a simple-yet-effective method for pruning channels based on a computationally light-weight yet effective data driven optimization step that discovers the necessary width per layer. Experiments conducted on ILSVRC-1212 confirm effectiveness of our approach. With non-uniform pruning across the layers on ResNet-5050, we are able to match the FLOP reduction of state-of-the-art channel pruning results while achieving a 0.98%0.98\% higher accuracy. Further, we show that our pruned ResNet-5050 network outperforms ResNet-3434 and ResNet-1818 networks, and that our pruned ResNet-101101 outperforms ResNet-5050.Comment: 12 pages, 3 figures, Published in ICLR 2020 NAS Worksho

    Discrimination-aware Channel Pruning for Deep Neural Networks

    Full text link
    Channel pruning is one of the predominant approaches for deep model compression. Existing pruning methods either train from scratch with sparsity constraints on channels, or minimize the reconstruction error between the pre-trained feature maps and the compressed ones. Both strategies suffer from some limitations: the former kind is computationally expensive and difficult to converge, whilst the latter kind optimizes the reconstruction error but ignores the discriminative power of channels. To overcome these drawbacks, we investigate a simple-yet-effective method, called discrimination-aware channel pruning, to choose those channels that really contribute to discriminative power. To this end, we introduce additional losses into the network to increase the discriminative power of intermediate layers and then select the most discriminative channels for each layer by considering the additional loss and the reconstruction error. Last, we propose a greedy algorithm to conduct channel selection and parameter optimization in an iterative way. Extensive experiments demonstrate the effectiveness of our method. For example, on ILSVRC-12, our pruned ResNet-50 with 30% reduction of channels even outperforms the original model by 0.39% in top-1 accuracy.Comment: NeurIPS 201

    Rethinking the Value of Network Pruning

    Full text link
    Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization.Comment: ICLR 2019. Significant revisions from the previous versio

    DAC: Data-free Automatic Acceleration of Convolutional Networks

    Full text link
    Deploying a deep learning model on mobile/IoT devices is a challenging task. The difficulty lies in the trade-off between computation speed and accuracy. A complex deep learning model with high accuracy runs slowly on resource-limited devices, while a light-weight model that runs much faster loses accuracy. In this paper, we propose a novel decomposition method, namely DAC, that is capable of factorizing an ordinary convolutional layer into two layers with much fewer parameters. DAC computes the corresponding weights for the newly generated layers directly from the weights of the original convolutional layer. Thus, no training (or fine-tuning) or any data is needed. The experimental results show that DAC reduces a large number of floating-point operations (FLOPs) while maintaining high accuracy of a pre-trained model. If 2% accuracy drop is acceptable, DAC saves 53% FLOPs of VGG16 image classification model on ImageNet dataset, 29% FLOPS of SSD300 object detection model on PASCAL VOC2007 dataset, and 46% FLOPS of a multi-person pose estimation model on Microsoft COCO dataset. Compared to other existing decomposition methods, DAC achieves better performance.Comment: Accepted by IEEE Winter Conference on Applications of Computer Vision (WACV 2019

    Deep Sparse Band Selection for Hyperspectral Face Recognition

    Full text link
    Hyperspectral imaging systems collect and process information from specific wavelengths across the electromagnetic spectrum. The fusion of multi-spectral bands in the visible spectrum has been exploited to improve face recognition performance over all the conventional broad band face images. In this book chapter, we propose a new Convolutional Neural Network (CNN) framework which adopts a structural sparsity learning technique to select the optimal spectral bands to obtain the best face recognition performance over all of the spectral bands. Specifically, in this method, images from all bands are fed to a CNN, and the convolutional filters in the first layer of the CNN are then regularized by employing a group Lasso algorithm to zero out the redundant bands during the training of the network. Contrary to other methods which usually select the useful bands manually or in a greedy fashion, our method selects the optimal spectral bands automatically to achieve the best face recognition performance over all spectral bands. Moreover, experimental results demonstrate that our method outperforms state of the art band selection methods for face recognition on several publicly-available hyperspectral face image datasets

    A One-step Pruning-recovery Framework for Acceleration of Convolutional Neural Networks

    Full text link
    Acceleration of convolutional neural network has received increasing attention during the past several years. Among various acceleration techniques, filter pruning has its inherent merit by effectively reducing the number of convolution filters. However, most filter pruning methods resort to tedious and time-consuming layer-by-layer pruning-recovery strategy to avoid a significant drop of accuracy. In this paper, we present an efficient filter pruning framework to solve this problem. Our method accelerates the network in one-step pruning-recovery manner with a novel optimization objective function, which achieves higher accuracy with much less cost compared with existing pruning methods. Furthermore, our method allows network compression with global filter pruning. Given a global pruning rate, it can adaptively determine the pruning rate for each single convolutional layer, while these rates are often set as hyper-parameters in previous approaches. Evaluated on VGG-16 and ResNet-50 using ImageNet, our approach outperforms several state-of-the-art methods with less accuracy drop under the same and even much fewer floating-point operations (FLOPs)
    corecore