543,079 research outputs found
Studies of new media radiation induced laser
Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed
Analysis And Performance Of A Picosecond Dye Laser Amplifier Chain
Design considerations are discussed for a simple, easy to use and relatively efficient high gain dye laser amplifier chain for CW mode-locked dye lasers. The amplifier boosts the output of a synchronously mode-locked dye laser to obtain ≈005 mj, ≤ 1 psec pulses over a ≈ 400 Å bandwidth. These pulses are suitable for efficient Raman Shifting, frequency mixing and continuum generation to vastly extend the spectral range of the system. Our amplifier is pumped by a frequency doubled Nd:YAG oscillator only, which longitudinally pumps three identical brewster cells with the same flowing dye solution in each. Contrary to popular belief, high small signal gains (≥ 105) are easily attained in a single stage with longitudinal pumping, with better beam homogeneity and easier alignment than transverse pumping. Gain saturation measurements are presented which agree well with calculations. Factors which relax the pump timing sensitivity are examined. The importance of gain saturation for both efficient amplification and for amplitude stability is also discussed. The need for isolated amplifier stages is stressed and optimal amplifier cell areas for a given stage are calculated
The performance of arm locking in LISA
For the laser interferometer space antenna (LISA) to reach it's design
sensitivity, the coupling of the free running laser frequency noise to the
signal readout must be reduced by more than 14 orders of magnitude. One
technique employed to reduce the laser frequency noise will be arm locking,
where the laser frequency is locked to the LISA arm length. This paper details
an implementation of arm locking, studies orbital effects, the impact of errors
in the Doppler knowledge, and noise limits. The noise performance of arm
locking is calculated with the inclusion of the dominant expected noise
sources: ultra stable oscillator (clock) noise, spacecraft motion, and shot
noise. Studying these issues reveals that although dual arm locking [A. Sutton
& D. A Shaddock, Phys. Rev. D 78, 082001 (2008).] has advantages over single
(or common) arm locking in terms of allowing high gain, it has disadvantages in
both laser frequency pulling and noise performance. We address this by
proposing a hybrid sensor, retaining the benefits of common and dual arm
locking sensors. We present a detailed design of an arm locking controller and
perform an analysis of the expected performance when used with and without
laser pre-stabilization. We observe that the sensor phase changes beneficially
near unity-gain frequencies of the arm-locking controller, allowing a factor of
10 more gain than previously believed, without degrading stability. We show
that the LISA frequency noise goal can be realized with arm locking and
Time-Delay Interferometry only, without any form of pre-stabilization.Comment: 28 pages, 36 figure
Process tomography of ion trap quantum gates
A crucial building block for quantum information processing with trapped ions
is a controlled-NOT quantum gate. In this paper, two different sequences of
laser pulses implementing such a gate operation are analyzed using quantum
process tomography. Fidelities of up to 92.6(6)% are achieved for single gate
operations and up to 83.4(8)% for two concatenated gate operations. By process
tomography we assess the performance of the gates for different experimental
realizations and demonstrate the advantage of amplitude--shaped laser pulses
over simple square pulses. We also investigate whether the performance of
concatenated gates can be inferred from the analysis of the single gates
Cycle II.5 aircraft aero-optical turbulent boundary-layer/shear-layer measurements
The aero-optical effects associated with propagating a laser beam through aircraft turbulent boundary layers and shear layers were examined. Observed laser optical performance levels were compared with those inferred from aerodynamic measurements of unsteady densities and correlation lengths within these random flows. Optical instrumentation included a fast shearing interferometer (FSI). A 9 cm diameter collimated helium neon laser beam made a double pass through the aircraft random flow via an airfoil mirror located one meter from the fuselage. Typical aircraft turbulent boundary layer thickness measured 0.3 meters. Averaging many FSI generated modulation transfer functions (MTFs) and Fourier transforming, this average yields the expected far field intensity degradation associated with an aircraft mounted laser system. Aerodynamic instrumentation included fine wire probes to measure unsteady temperature and mass flux. A laser doppler velocimeter measured unsteady velocity within the flows. An analysis of these data yielded point measurements of unsteady density and correlation length
Analysis of laser fluorosensor systems for remote algae detection and quantification
The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections
The route toward a diode-pumped 1-W erbium 3-µm fiber laser
A rate-equation analysis of the erbium 3-um ZBLAN fiber laser is performed. The computer calculation includes the longitudinal spatial resolution of the host material. It considers ground-state bleaching, excited-state absorption (ESA), interionic processes, lifetime quenching by co-doping, and stimulated emission at 2.7 um and 850 nm. State-of-the-art technology including double-clad diode pumping is assumed in the calculation. Pump ESA is identified as the major problem of this laser. With high Er3+ concentration, suitable Pr3+ co-doping, and low pump density, ESA is avoided and a diode-pumped erbium 3-um ZBLAN laser is predicted which is capable of emitting a transversely single-mode output power of 1.0 W when pumped with 7-W incident power at 800 nm. The corresponding output intensity which is relevant for surgical applications will be in the range of 1.8 MW/cm2. Compared to Ti:sapphire-pumped cascade-lasing regimes, the proposed approach represents a strong decrease of the requirements on mirror coatings, cavity alignment, and especially pump intensity. Of the possible drawbacks investigated in the simulation, only insufficient lifetime quenching is found to have a significant influence on laser performance
Experimental investigation of the impact of optical injection on vital parameters of a gain-switched pulse source
An analysis of optical injection on a gain-switched distributed feedback (DFB) laser and its impact on pulse parameters that influence the performance of the pulse source in high-speed optical communication systems is presented in this paper. A range of 10 GHz in detuning and 5 dB in injected power has been experimentally identified to attain pulses, from an optically injected gain-switched DFB laser, with durations below 10 ps and pedestal suppression higher than 35 dB. These pulse features are associated with a side mode suppression ratio of about 30 dB and a timing jitter of less than 1 ps. This demonstrates the feasibility of using optical injection in conjunction with appropriate pulse compression schemes for developing an optimized and cost-efficient pulse source, based on a gain-switched DFB laser, for high-speed photonic systems
Deep Transfer Learning Methods for Colon Cancer Classification in Confocal Laser Microscopy Images
Purpose: The gold standard for colorectal cancer metastases detection in the
peritoneum is histological evaluation of a removed tissue sample. For feedback
during interventions, real-time in-vivo imaging with confocal laser microscopy
has been proposed for differentiation of benign and malignant tissue by manual
expert evaluation. Automatic image classification could improve the surgical
workflow further by providing immediate feedback.
Methods: We analyze the feasibility of classifying tissue from confocal laser
microscopy in the colon and peritoneum. For this purpose, we adopt both
classical and state-of-the-art convolutional neural networks to directly learn
from the images. As the available dataset is small, we investigate several
transfer learning strategies including partial freezing variants and full
fine-tuning. We address the distinction of different tissue types, as well as
benign and malignant tissue.
Results: We present a thorough analysis of transfer learning strategies for
colorectal cancer with confocal laser microscopy. In the peritoneum, metastases
are classified with an AUC of 97.1 and in the colon, the primarius is
classified with an AUC of 73.1. In general, transfer learning substantially
improves performance over training from scratch. We find that the optimal
transfer learning strategy differs for models and classification tasks.
Conclusions: We demonstrate that convolutional neural networks and transfer
learning can be used to identify cancer tissue with confocal laser microscopy.
We show that there is no generally optimal transfer learning strategy and model
as well as task-specific engineering is required. Given the high performance
for the peritoneum, even with a small dataset, application for intraoperative
decision support could be feasible.Comment: Accepted for publication in the International Journal of Computer
Assisted Radiology and Surgery (IJCARS
Analysis of the improvement in sky coverage for multiconjugate adaptive optics systems obtained using minimum variance split tomography
The scientific utility of laser-guide-star-based multiconjugate adaptive optics systems depends upon high sky coverage. Previously we reported a high-fidelity sky coverage analysis of an ad hoc split tomography control algorithm and a postprocessing simulation technique. In this paper, we present the performance of a newer minimum variance split tomography algorithm, and we show that it brings a median improvement at zenith of 21 nm rms optical path difference error over the ad hoc split tomography control algorithm for our system, the Narrow Field Infrared Adaptive Optics System for the Thirty Meter Telescope. In order to make the comparison, we also validated our previously developed sky coverage postprocessing software using an integrated simulation of both high- (laser guide star) and low-order (natural guide star) loops. A new term in the noise model is also identified that improves the performance of both algorithms by more properly regularizing the reconstructor
- …
