2,978 research outputs found

    A Search for New Physics with the BEACON Mission

    Full text link
    The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around Earth. This curvature is characterized by the Eddington parameter \gamma -- the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 x 10^{-9} in measuring the parameter \gamma, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the "frame-dragging" and geodetic precessions in the Earth's rotational gravitomagnetic field, to 0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravity's non-linear effects on light and corresponding 2nd order spatial metric's effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics -- this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in physics. BEACON will provide crucial information to separate modern scalar-tensor theories of gravity from general relativity, probe possible ways for gravity quantization, and test modern theories of cosmological evolution.Comment: 8 pages, 2 figures, 2 table

    ASTROD and ASTROD I -- Overview and Progress

    Full text link
    In this paper, we present an overview of ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I mission concepts and studies. The missions employ deep-space laser ranging using drag-free spacecraft to map the gravitational field in the solar-system. The solar-system gravitational field is determined by three factors: the dynamic distribution of matter in the solar system; the dynamic distribution of matter outside the solar system (galactic, cosmological, etc.) and gravitational waves propagating through the solar system. Different relativistic theories of gravity make different predictions of the solar-system gravitational field. Hence, precise measurements of the solar-system gravitational field test all these. The tests and observations include: (i) a precise determination of the relativistic parameters beta and gamma with 3-5 orders of magnitude improvement over previous measurements; (ii) a 1-2 order of magnitude improvement in the measurement of G-dot; (iii) a precise determination of any anomalous, constant acceleration Aa directed towards the Sun; (iv) a measurement of solar angular momentum via the Lense-Thirring effect; (v) the detection of solar g-mode oscillations via their changing gravity field, thus, providing a new eye to see inside the Sun; (vi) precise determination of the planetary orbit elements and masses; (viii) better determination of the orbits and masses of major asteroids; (ix) detection and observation of gravitational waves from massive black holes and galactic binary stars in the frequency range 0.05 mHz to 5 mHz; and (x) exploring background gravitational-waves.Comment: 17 pages, 6 figures, presented to The Third International ASTROD Symposium on Laser Astrodynamics, Space Test of Relativity and Gravitational-Wave Astronomy, Beijing, July 14-16, 2006; International Journal of Modern Physics D, in press (2008

    The control challenges for the Next Generation Gravity Mission

    Get PDF
    Several activities are on going in preparation of a "Next Generation Gravity Mission" (NGGM) aimed at measuring the temporal variations of the Earth gravity field over a long time span with high spatial resolution and high temporal resolution. The most appropriate measurement technique identified for such mission is the "Low-Low Satellite-Satellite Tracking" in which two satellites flying in loose formation in a low Earth orbit act as proof masses immersed in the Earth gravity field. The distance variation between the satellites and the non-gravitational accelerations of the satellites, measured respectively by a laser interferometer and by ultra-sensitive accelerometers, are the fundamental observables from which the Earth gravitational field is obtained. The control system for the NGGM must fulfil the challenging combination of requirements for the orbit and formation maintenance, attitude stabilisation, drag compensation and microradian laser beam pointing. This paper presents the assessment and the preliminary design of the NGGM control system, performed by Thales Alenia Space Italia and Politecnico di Torino for the European Space Agency

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph
    • …
    corecore