873,680 research outputs found

    Laser action generated within a light pipe: A concept

    Get PDF
    Laser light could be generated within light pipe itself, thereby eliminating coupling losses. Theoretical calculations have shown feasibility of light-pipe laser propagating in circularly-polarized TE mode. It is predicted that fiber-optic distributed-feedback laser would have gain on order of 25 dB

    Observation of recoil-induced resonances and electromagnetically induced absorption of cold atoms in diffuse light

    Full text link
    In this paper we report an experiment on the observation of the recoil-induced resonances (RIR) and electromagnetically induced absorption (EIA) of cold Rb87 atoms in diffuse light. The pump light of the RIR and the EIA comes from the diffuse light in an integrating sphere, which also serves the cooling light. The probe light beam is a weak laser split from the cooling laser in order to keep the cooling and probe lasers correlated. We measured the RIR and the EIA signal varying with the detuning of the diffuse laser light, and also measured the temperature of the cold atoms at the different detunings. The mechanism of RIR and EIA in the configuration with diffuse-light pumping and laser probing is discussed, and the difference of nonlinear spectra of cold atoms between in diffuse-light cooling system and in optical molasses as well as in a magneto-optical trap (MOT) are studied.Comment: 9 pages, 6 figure

    Multiperiod-grating surface-emitting lasers

    Get PDF
    Surface-emitting distributed feedback (DFB) lasers are disclosed with hybrid gratings. A first-order grating is provided at one or both ends of the active region of the laser for retroreflection of light back into the active region, and a second-order or nonresonant grating is provided at the opposite end for coupling light out perpendicular to the surfaces of the laser or in some other selected direction. The gratings may be curved to focus light retroreflected into the active region and to focus light coupled out to a point. When so focused to a point, the DFB laser may be part of a monolithic read head for a laser recorded disk, or an optical coupler into an optical fiber

    Laser cooling of new atomic and molecular species with ultrafast pulses

    Full text link
    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR

    A compact iodine-laser operating at 531 nm with stability at the 1012^{-12} level and using a coin-sized laser module

    Full text link
    We demonstrate a compact iodine-stabilized laser operating at 531 nm using a coin-sized light source consisting of a 1062-nm distributed-feedback diode laser and a frequency-doubling element. A hyperfine transition of molecular iodine is observed using the light source with saturated absorption spectroscopy. The light source is frequency stabilized to the observed iodine transition and achieves frequency stability at the 1012^{-12} level. The absolute frequency of the compact laser stabilized to the a1a_{1} hyperfine component of the R(36)320R(36)32-0 transition is determined as 564074632419(8)564\,074\,632\,419(8) kHz with a relative uncertainty of 1.4×10111.4\times10^{-11}. The iodine-stabilized laser can be used for various applications including interferometric measurements

    Stimulation of TRPV1 by green laser light

    Get PDF
    Low-level laser irradiation of visible light had been introduced as a medical treatment already more than 40 years ago, but its medical application still remains controversial. Laser stimulation of acupuncture points has also been introduced, and mast-cells degranulation has been suggested. Activation of TRPV ion channels may be involved in the degranulation. Here, we investigated whether TRPV1 could serve as candidate for laser-induced mast cell activation. Activation of TRPV1 by capsaicin resulted in degranulation. To investigate the effect of laser irradiation on TRPV1, we used the Xenopus oocyte as expression and model system. We show that TRPV1 can functionally be expressed in the oocyte by (a) activation by capsaicin (K 1/2 = 1.1 μM), (b) activation by temperatures exceeding 42°C, (c) activation by reduced pH (from 7.4 to 6.2), and (d) inhibition by ruthenium red. Red (637 nm) as well as blue (406 nm) light neither affected membrane currents in oocytes nor did it modulate capsaicin-induced current. In contrast, green laser light (532 nm) produced power-dependent activation of TRPV1. In conclusion, we could show that green light is effective at the cellular level to activate TRPV1. To which extend green light is of medical relevance needs further investigation

    Optically induced free carrier light modulator

    Get PDF
    Signal carrier laser beam is optically modulated by a second laser beam of different frequency acting on a free carrier source to which the signal carrier laser is directed. The second laser beam affects the transmission characteristics of the free carrier source to light from the signal carrier laser, thus modulating it
    corecore