239,968 research outputs found
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
Transverse Optical Mode Patterns for an RF Excited Ar-He-Xe Laser
Transverse optical modes for an RF excited Ar-He-Xe laser are studied both experimentally and theoretically. A diffraction model for a waveguide with a nonsaturable gain and refractive index gradients placed between two plane mirrors is formulated. The effects of gain and diffraction index gradients and of diffraction in free space are evaluated for typical experimental conditions. A direct comparison between theoretical mode patterns and experimentally measured ones at distances of 17 and 114 cm from the output mirror demonstrated a satisfactory agreement for various laser wavelengths and gas mixture composition
Latent image diffraction from submicron photoresist gratings
Light scattering from latent images in photoresist is useful for lithographic tool characterization, process monitoring, and process control. In particular, closed‐loop control of lithographic processes is critical for high yield, low cost device manufacturing. In this work, we report use of pulsed laser diffraction from photoresist latent images in 0.24 μm pitch distributed feedback laser gratings. Gated detection of pulsed light scattering permits high spatial resolution probing using ultraviolet light without altering the latent image. A correlation between latent image and etched grating diffraction efficiencies is demonstrated and shows the value of "upstream" monitoring
High contrast Mach-Zehnder lithium atom interferometer in the Bragg regime
We have constructed an atom interferometer of the Mach-Zehnder type,
operating with a supersonic beam of lithium. Atom diffraction uses Bragg
diffraction on laser standing waves. With first order diffraction, our
apparatus has given a large signal and a very good fringe contrast (74%), which
we believe to be the highest ever observed with atom interferometers. This
apparatus will be applied to high sensitivity measurementsComment: 6 pages, 3 figures, accepted by Appl. Phys.
Atom-optics hologram in the time domain
The temporal evolution of an atomic wave packet interacting with object and
reference electromagnetic waves is investigated beyond the weak perturbation of
the initial state. It is shown that the diffraction of an ultracold atomic beam
by the inhomogeneous laser field can be interpreted as if the beam passes
through a three-dimensional hologram, whose thickness is proportional to the
interaction time. It is found that the diffraction efficiency of such a
hologram may reach 100% and is determined by the duration of laser pulses. On
this basis a method for reconstruction of the object image with matter waves is
offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change
Improved optical diffractometer
Diffractometer is designed for diffraction measurements in the visible and near-infrared spectral regions. It provides higher resolution of diffraction patterns, an alternate illumination section for coherent light /from a laser source/, a unique alignment and adjustment arrangement for the optical system, and a very stable mounting
Double diffraction in an atomic gravimeter
We demonstrate the realization of a new scheme for cold atom gravimetry based
on the use of double diffraction beamsplitters recently demonstrated in
\cite{Leveque}, where the use of two retro-reflected Raman beams allows
symmetric diffraction in momenta. Though in principle
restricted to the case of zero Doppler shift, for which the two pairs of Raman
beams are simultaneously resonant, we demonstrate that such diffraction pulses
can remain efficient on atoms with non zero velocity, such as in a gravimeter,
when modulating the frequency of one of the two Raman laser sources. We use
such pulses to realize an interferometer insensitive to laser phase noise and
some of the dominant systematics. This reduces the technical requirements and
would allow the realization of a simple atomic gravimeter. We demonstrate a
sensitivity of per shot
- …
