319,733 research outputs found

    First detection of Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee colony

    Get PDF
    Paenibacillus larvae is a highly contagious and often lethal widely distributed pathogen of honeybees, Apis mellifera but has not been reported in eastern Africa to date. We investigated the presence of P. larvae in the eastern and western highland agro-ecological zones of Uganda by collecting brood and honey samples from 67 honeybee colonies in two sampling occasions and cultivated them for P. larvae. Also, 8 honeys imported and locally retailed in Uganda were sampled and cultivated for P. larvae. Our aim was to establish the presence and distribution of P. larvae in honeybee populations in the two highland agro-ecological zones of Uganda and to determine if honeys that were locally retailed contained this lethal pathogen. One honeybee colony without clinical symptoms for P. larvae in an apiary located in a protected area of the western highlands of Uganda was found positive for P. larvae. The strain of this P. larvae was genotyped and found to be ERIC I. In order to compare its virulence with P. larvae reference strains, in vitro infection experiments were conducted with carniolan honeybee larvae from the research laboratory at Ghent University, Belgium. The results show that the virulence of the P. larvae strain found in Uganda was at least equally high. The epidemiological implication of the presence of P. larvae in a protected area is discussed

    Distribution, feeding condition, and growth of Japanese Spanish mackerel (Scomberomorus niphonius) larvae in the Seto Inland Sea

    Get PDF
    Distribution of eggs and larvae and feeding and growth of larvae of Japanese Spanish mackerel (Scomberomorus niphonius) were investigated in relation to their prey in the Sea of Hiuchi, the Seto Inland Sea, Japan, in 1995 and 1996. The abundance of S. niphonius eggs and larvae peaked in late May, corresponding with that of clupeid larvae, the major prey organisms of S. niphonius larvae. The eggs were abundant in the northwestern waters and the larvae were abundant in the southern waters in late May in both years, indicating a southward drift during egg and yolksac stages by residual f low in the central part of the Sea of Hiuchi. Abundance of clupeid larvae in southern waters, where S. niphonius larvae were abundant, may indicate a spawning strategy on the part of first-feeding S. niphonius larvae to encounter the spatial and temporal peak in ichthyoplankton prey abundance in the Seto Inland Sea. Abundance of the clupeid larvae was higher in 1995 than in 1996. Feeding incidence (percentage of stomachs with food; 85.3% in 1995 and 67.7% in 1996) and mean growth rate estimated from otolith daily increments (1.05 mm/d in 1995 and 0.85 mm/d in 1996) of S. niphonius larvae in late May were significantly higher in 1995. Young-of-the-year S. niphonius abundance and catch per unit of fishing effort of 1-year-old S. niphonius in the Sea of Hiuchi was higher in 1995, indicating a more successful recruitment in this year. Spatial and temporal correspondence with high ichthyoplankton prey concentration was considered one of the important determinants for the feeding success, growth, and survival of S. niphonius larvae

    Lactoferrin Decreases the Intestinal Inflammation Triggered by a Soybean Meal-Based Diet in Zebrafish

    Get PDF
    Indexación: Web of ScienceIntestinal inflammation is a harmful condition in fish that can be triggered by the ingestion of soybean meal. Due to the positive costs-benefits ratio of including soybean meal in farmed fish diets, identifying additives with intestinal anti-inflammatory effects could contribute to solving the issues caused by this plant protein. This study evaluated the effect of incorporating lactoferrin (LF) into a soybean meal-based diet on intestinal inflammation in zebrafish. Larvae were fed with diets containing 50% soybean meal (50SBM) or 50SBM supplemented with LF to 0.5, 1, 1.5 g/kg (50SBM+LF0.5; 50SBM+LF1.0; 50SBM+LF1.5). The 50SBM+LF1.5 diet was the most efficient and larvae had a reduced number of neutrophils in the intestine compared with 50SBM larvae and an indistinguishable number compared with control larvae. Likewise, the transcription of genes involved in neutrophil migration and intestinal mucosal barrier functions (mmp9, muc2.2, and beta-def-1) were increased in 50SBM larvae but were normally expressed in 50SBM+LF1.5 larvae. To determine the influence of intestinal inflammation on the general immune response, larvae were challenged with Edwardsiella tarda. Larvae with intestinal inflammation had increased mortality rate compared to control larvae. Importantly, 50SBM+LF1.5 larvae had a mortality rate lower than control larvae. These results demonstrate that LF displays a dual effect in zebrafish, acting as an intestinal anti-inflammatory agent and improving performance against bacterial infection.http://www.hindawi.com/journals/jir/2016/1639720

    A Laboratory Infection of Alfalfa Weevil, \u3ci\u3eHypera Postica\u3c/i\u3e (Coleoptera: Curculionidae), Larvae With the Fungal Pathogen \u3ci\u3eZoophthora Phytonomi\u3c/i\u3e (Zygomycetes: Entomophthoraceae)

    Get PDF
    Larvae of the alfalfa weevil, Hypera postica, were infected by an in vitro colony of Zoophthora phytonomi. Two spore types (infective conidia, and resting spores) were produced from infection trials. The spore type produced may be influenced by the physiological state of the larvae. Trials using field collected larvae which would produce diapausing adults formed both conidia and resting spores. Trials using larvae from a nondiapausing colony, however, formed only resting spores

    Recombinant DnaK orally administered protects axenic European sea bass against vibriosis

    Get PDF
    Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (10(5) CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture

    Diapause Dynamics And Host Plant Utilization of \u3ci\u3eColias Philodice, Colias Interior\u3c/i\u3e and Their Hybrids (Lepidoptera: Pieridae)

    Get PDF
    Abnormal diapause dynamics and, to a lesser extent, reduced efficiency of host utilization by hybrid larvae constitute potential post-zygotic barriers to gene flow between a multivoltine legume-feeder, Colias philodice (Lepidoptera: Pieridae) and a univoltine Vaccinium-feeder, C. interior. At the time when C. interior larvae enter diapause, approximately 50% of hybrid larvae ceased feeding but did not enter diapause, and subsequently starved. Hybrid larvae readily accepted the host plants of both parental species. However, relative to C. philodice, hybrid larvae displayed a significantly reduced fifth instar relative growth rate (RGR) when fed the primary legume host, Medicago sativa. Reduced growth of hybrid larvae was attributable to both reduced relative consumption rate (RCR) and reduced efficiency of conversion of digested food (ECD), but not to reduced digestive efficiency (AD). Relative to C. interior, hybrid larvae fed Vaccinium myrtilloides displayed reduced pupal weight and reduced ECD. These results may explain in part why all known naturally­ occurring hybrids among North American Colias arise from parental species with similar host plant ranges and diapause strategies

    Comparative Genomics of 9 Novel Paenibacillus Larvae Bacteriophages

    Get PDF
    American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 30 overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area

    Larvae of the three common North American species of Phylocentropus (Trichoptera: Dipseudopsidae)

    Get PDF
    The caddisfly genus Phylocentropus includes 7 extant species globally, of which 5 occur in eastern North America and 2 in eastern Asia. Larvae of the 3 most common North American species [Phylocentropus carolinus Carpenter, P. lucidus (Hagen), and P. placidus (Banks)] were associated with identifiable adults and diagnostic characters are described. Larvae ofthese 3 species may be distinguished by overall length of mature larvae, head color pattern, and number of spines on the hind tibiae. Larvae of other species of this genus are unknown

    Description of early life history stages of the northern sculpin (Icelinus borealis Gilbert) (Teleostei: Cottidae)

    Get PDF
    Larvae of the genus Icelinus are collected more frequently than any other sculpin larvae in ichthyoplankton surveys in the Gulf of Alaska and Bering Sea, and larvae of the northern sculpin (Icelinus borealis) are commonly found in the ichthyofauna in both regions. Northern sculpin are geographically isolated north of the Aleutian Islands, Alaska, which allows for a definitive description of its early life history development in the Bering Sea. A combination of morphological characters, pigmentation, preopercular spine pattern, meristic counts, and squamation in later developmental stages is essential to identify Icelinus to the species level. Larvae of northern sculpin have 35–36 myomeres, pelvic fins with one spine and two rays, a bony preopercular shelf, four preopercular spines, 3–14 irregular postanal ventral melanophores, few, if any, melanophores ventrally on the gut, and in larger specimens, two rows of ctenoid scales directly beneath the dorsal fins extending onto the caudal peduncle. The taxonomic characters of the larvae of northern sculpin in this study may help differentiate northern sculpin larvae from its congeners, and other sympatric sculpin larvae, and further aid in solving complex systematic relationships within the family Cottidae

    The Effect of Rekattidiri Ovitrap Towards Aedes Aegypti Larval Density

    Get PDF
    Dengue Hemorrhagic Fever (DHF) is a health problem in Indonesia. The entire region of Indonesia at risk of contracting dengue disease. The study aims to prove the effect of modifications ovitrap rekattidiri on the density of larvae (HI: House Index, CI: Container Index and BI: Breteu Index) as well as comparing the differences between the mean larvae trapped between ovitrap Rekattidiri with standard ovitrap. Using a quasi experimental design, time series experimental design with Control group. Population subjects were Aedes aegypti at the endemic sites in Pontianak, West Borneo. The results showed larval density index in the intervention area decreased each ie HI from 26% to 3%, CI of 6.95% to 2.19 %, and BI from 29% to 13%. The number of larvae trapped in ovitrap rekattidiri ie 70% (12,770 larvae) more than the standard ovitrap in the control and intervention, namely: 17% (3,057 larvae) and 13% (2,334 larvae). It is concluded that there are significant modifications Rekattidiri ovitrap against larval density index (HI p-value: 0.025, CI p-value: 0.052, BI value of p: 0.04) and there are differences between the mean larvae trapped in ovitrap Rekattidiri and standard ovitrap with p value: 0.001
    corecore