10,315 research outputs found

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least n−m/4.5n-m/4.5 vertices, an induced partial 2-tree of at least n−m/5n-m/5 vertices, and an induced planar subgraph of at least n−m/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most n−m/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application

    Sudden emergence of q-regular subgraphs in random graphs

    Full text link
    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large qq-regular subgraph, i.e., a subgraph with all vertices having degree equal to qq. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q=3q=3, we find that the first large qq-regular subgraphs appear discontinuously at an average vertex degree c_\reg{3} \simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c_\cor{3} \simeq 3.3509. For q>3q>3, the qq-regular subgraph percolation threshold is found to coincide with that of the qq-core.Comment: 7 pages, 5 figure

    On the threshold for k-regular subgraphs of random graphs

    Full text link
    The kk-core of a graph is the largest subgraph of minimum degree at least kk. We show that for kk sufficiently large, the (k+2)(k + 2)-core of a random graph \G(n,p) asymptotically almost surely has a spanning kk-regular subgraph. Thus the threshold for the appearance of a kk-regular subgraph of a random graph is at most the threshold for the (k+2)(k+2)-core. In particular, this pins down the point of appearance of a kk-regular subgraph in \G(n,p) to a window for pp of width roughly 2/n2/n for large nn and moderately large kk

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page
    • …
    corecore