4 research outputs found

    A Generic Framework and Methodology for Implementing Science Gateways for Analysing Molecular Docking Results

    Get PDF
    Molecular docking and virtual screening experiments require large computational and data resources and high-level user interfaces in the form of science gateways. While science gateways supporting such experiments are relatively common, there is a clearly identified need to design and implement more complex environments for further analysis of docking results. This paper describes a generic framework and a related methodology that supports the efficient development of such environments. The framework is modular enabling the reuse of already existing components. The methodology is agile and encourages the input and participation of end-users. A prototype implementation, based on the framework and methodology, of a science-gateway-based molecular docking environment for recommending a ligand-protein pair for next docking experiment is also presented and evaluated

    Molecular docking with Raccoon2 on clouds: extending desktop applications with cloud computing

    Get PDF
    Molecular docking is a computer simulation that predicts the binding affinity between two molecules, a ligand and a receptor. Large-scale docking simulations, using one receptor and many ligands, are known as structure-based virtual screening. Often used in drug discovery, virtual screening can be very computationally demanding. This is why user-friendly domain-specific web or desktop applications that enable running simulations on powerful computing infrastructures have been created. Cloud computing provides on-demand availability, pay-per-use pricing, and great scalability which can improve the performance and efficiency of scientific applications. This paper investigates how domain-specific desktop applications can be extended to run scientific simulations on various clouds. A generic approach based on scientific workflows is proposed, and a proof of concept is implemented using the Raccoon2 desktop application for virtual screening, WS-PGRADE workflows, and gUSE services with the CloudBroker platform. The presented analysis illustrates that this approach of extending a domain-specific desktop application can run workflows on different types of clouds, and indeed makes use of the on-demand scalability provided by cloud computing. It also facilitates the execution of virtual screening simulations by life scientists without requiring them to abandon their favourite desktop environment and providing them resources without major capital investment

    Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

    Get PDF
    Molecular docking and virtual screening experiments require large computational and data resources and high-level user interfaces in the form of science gateways. While science gateways supporting such experiments are relatively common, there is a clearly identified need to design and implement more complex environments for further analysis of docking results. This paper describes a generic framework and a related methodology that supports the efficient development of such environments. The framework is modular enabling the reuse of already existing components. The methodology, which proposes three techniques that the development team can use, is agile and encourages active participation of end-users. Based on the framework and methodology, two prototype implementations of science-gateway-based docking environments are presented and evaluated. The first system recommends a receptor-ligand pair for the next docking experiment, and the second filters docking results based on ligand properties

    Large-scale virtual screening experiments on Windows Azure-based cloud resources

    No full text
    Molecular docking simulations have high potential to contribute to a wide area of molecular and biomedical research in various disciplines including molecular biology, drug design, environmental studies and psychology. Conducting large-scale molecular docking experiments requires a vast amount of computing resources. Several types of distributed computing infrastructures have been investigated and utilized recently to conduct such simulations, including service and desktop grid systems or local clusters. This paper investigates and analyses how Windows Azure-based cloud resources can be applied for this purpose. A virtual screening experiment framework has been implemented on a Windows Azure-based cloud using the generic worker concept. Virtual machines can be instantiated in the cloud on demand scaling up the simulations based on the volume of molecules to be docked and the available financial resources. Bioscientists are able to execute the simulations and visualise the results from a high-level user interface. The paper describes the experiences when implementing the molecular docking application on this novel platform and provides the first benchmarking experiments to evaluate the suitability of the infrastructure for computation intensive simulations
    corecore