10,894 research outputs found

    A Novel Progressive Multi-label Classifier for Classincremental Data

    Full text link
    In this paper, a progressive learning algorithm for multi-label classification to learn new labels while retaining the knowledge of previous labels is designed. New output neurons corresponding to new labels are added and the neural network connections and parameters are automatically restructured as if the label has been introduced from the beginning. This work is the first of the kind in multi-label classifier for class-incremental learning. It is useful for real-world applications such as robotics where streaming data are available and the number of labels is often unknown. Based on the Extreme Learning Machine framework, a novel universal classifier with plug and play capabilities for progressive multi-label classification is developed. Experimental results on various benchmark synthetic and real datasets validate the efficiency and effectiveness of our proposed algorithm.Comment: 5 pages, 3 figures, 4 table

    DeepSignals: Predicting Intent of Drivers Through Visual Signals

    Full text link
    Detecting the intention of drivers is an essential task in self-driving, necessary to anticipate sudden events like lane changes and stops. Turn signals and emergency flashers communicate such intentions, providing seconds of potentially critical reaction time. In this paper, we propose to detect these signals in video sequences by using a deep neural network that reasons about both spatial and temporal information. Our experiments on more than a million frames show high per-frame accuracy in very challenging scenarios.Comment: To be presented at the IEEE International Conference on Robotics and Automation (ICRA), 201

    Open Set Classification for Deep Learning in Large-Scale and Continual Learning Models

    Get PDF
    Supervised classification methods often assume the train and test data distributions are the same and that all classes in the test set are present in the training set. However, deployed classifiers require the ability to recognize inputs from outside the training set as unknowns and update representations in near real-time to account for novel concepts unknown during offline training. This problem has been studied under multiple paradigms including out-of-distribution detection and open set recognition; however, for convolutional neural networks, there have been two major approaches: 1) inference methods to separate known inputs from unknown inputs and 2) feature space regularization strategies to improve model robustness to novel inputs. In this dissertation, we explore the relationship between the two approaches and directly compare performance on large-scale datasets that have more than a few dozen categories. Using the ImageNet large-scale classification dataset, we identify novel combinations of regularization and specialized inference methods that perform best across multiple open set classification problems of increasing difficulty level. We find that input perturbation and temperature scaling yield significantly better performance on large-scale datasets than other inference methods tested, regardless of the feature space regularization strategy. Conversely, we also find that improving performance with advanced regularization schemes during training yields better performance when baseline inference techniques are used; however, this often requires supplementing the training data with additional background samples which is difficult in large-scale problems. To overcome this problem we further propose a simple regularization technique that can be easily applied to existing convolutional neural network architectures that improves open set robustness without the requirement for a background dataset. Our novel method achieves state-of-the-art results on open set classification baselines and easily scales to large-scale problems. Finally, we explore the intersection of open set and continual learning to establish baselines for the first time for novelty detection while learning from online data streams. To accomplish this we establish a novel dataset created for evaluating image open set classification capabilities of streaming learning algorithms. Finally, using our new baselines we draw conclusions as to what the most computationally efficient means of detecting novelty in pre-trained models and what properties of an efficient open set learning algorithm operating in the streaming paradigm should possess
    • …
    corecore