264,348 research outputs found

    RHCO: A Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning for Large-scale Graphs

    Full text link
    Heterogeneous graph neural networks (HGNNs) have been widely applied in heterogeneous information network tasks, while most HGNNs suffer from poor scalability or weak representation when they are applied to large-scale heterogeneous graphs. To address these problems, we propose a novel Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO) for large-scale heterogeneous graph representation learning. Unlike traditional heterogeneous graph neural networks, we adopt the contrastive learning mechanism to deal with the complex heterogeneity of large-scale heterogeneous graphs. We first learn relation-aware node embeddings under the network schema view. Then we propose a novel positive sample selection strategy to choose meaningful positive samples. After learning node embeddings under the positive sample graph view, we perform a cross-view contrastive learning to obtain the final node representations. Moreover, we adopt the label smoothing technique to boost the performance of RHCO. Extensive experiments on three large-scale academic heterogeneous graph datasets show that RHCO achieves best performance over the state-of-the-art models

    Subgraph Contrastive Link Representation Learning

    Full text link
    Graph representation learning (GRL) has emerged as a powerful technique for solving graph analytics tasks. It can effectively convert discrete graph data into a low-dimensional space where the graph structural information and graph properties are maximumly preserved. While there is rich literature on node and whole-graph representation learning, GRL for link is relatively less studied and less understood. One common practice in previous works is to generate link representations by directly aggregating the representations of their incident nodes, which is not capable of capturing effective link features. Moreover, common GRL methods usually rely on full-graph training, suffering from poor scalability and high resource consumption on large-scale graphs. In this paper, we design Subgraph Contrastive Link Representation Learning (SCLRL) -- a self-supervised link embedding framework, which utilizes the strong correlation between central links and their neighborhood subgraphs to characterize links. We extract the "link-centric induced subgraphs" as input, with a subgraph-level contrastive discrimination as pretext task, to learn the intrinsic and structural link features via subgraph mini-batch training. Extensive experiments conducted on five datasets demonstrate that SCLRL has significant performance advantages in link representation learning on benchmark datasets and prominent efficiency advantages in terms of training speed and memory consumption on large-scale graphs, when compared with existing link representation learning methods.Comment: 8 pages, 4 figure

    An Effective and Efficient Graph Representation Learning Approach for Big Graphs

    Get PDF
    In the Big Data era, large graph datasets are becoming increasingly popular due to their capability to integrate and interconnect large sources of data in many fields, e.g., social media, biology, communication networks, etc. Graph representation learning is a flexible tool that automatically extracts features from a graph node. These features can be directly used for machine learning tasks. Graph representation learning approaches producing features preserving the structural information of the graphs are still an open problem, especially in the context of large-scale graphs. In this paper, we propose a new fast and scalable structural representation learning approach called SparseStruct. Our approach uses a sparse internal representation for each node, and we formally proved its ability to preserve structural information. Thanks to a light-weight algorithm where each iteration costs only linear time in the number of the edges, SparseStruct is able to easily process large graphs. In addition, it provides improvements in comparison with state of the art in terms of prediction and classification accuracy by also providing strong robustness to noise data

    Unsupervised Semantic Representation Learning of Scientific Literature Based on Graph Attention Mechanism and Maximum Mutual Information

    Full text link
    Since most scientific literature data are unlabeled, this makes unsupervised graph-based semantic representation learning crucial. Therefore, an unsupervised semantic representation learning method of scientific literature based on graph attention mechanism and maximum mutual information (GAMMI) is proposed. By introducing a graph attention mechanism, the weighted summation of nearby node features make the weights of adjacent node features entirely depend on the node features. Depending on the features of the nearby nodes, different weights can be applied to each node in the graph. Therefore, the correlations between vertex features can be better integrated into the model. In addition, an unsupervised graph contrastive learning strategy is proposed to solve the problem of being unlabeled and scalable on large-scale graphs. By comparing the mutual information between the positive and negative local node representations on the latent space and the global graph representation, the graph neural network can capture both local and global information. Experimental results demonstrate competitive performance on various node classification benchmarks, achieving good results and sometimes even surpassing the performance of supervised learning
    • …
    corecore