15,272 research outputs found

    Large-Scale Geo-Facial Image Analysis

    Get PDF
    While face analysis from images is a well-studied area, little work has explored the dependence of facial appearance on the geographic location from which the image was captured. To fill this gap, we constructed GeoFaces, a large dataset of geotagged face images, and used it to examine the geo-dependence of facial features and attributes, such as ethnicity, gender, or the presence of facial hair. Our analysis illuminates the relationship between raw facial appearance, facial attributes, and geographic location, both globally and in selected major urban areas. Some of our experiments, and the resulting visualizations, confirm prior expectations, such as the predominance of ethnically Asian faces in Asia, while others highlight novel information that can be obtained with this type of analysis, such as the major city with the highest percentage of people with a mustache

    Large-scale geo-facial image analysis

    Get PDF
    While face analysis from images is a well-studied area, little work has explored the dependence of facial appearance on the geographic location from which the image was captured. To fill this gap, we constructed GeoFaces, a large dataset of geotagged face images, and used it to examine the geo-dependence of facial features and attributes, such as ethnicity, gender, or the presence of facial hair. Our analysis illuminates the relationship between raw facial appearance, facial attributes, and geographic location, both globally and in selected major urban areas. Some of our experiments, and the resulting visualizations, confirm prior expectations, such as the predominance of ethnically Asian faces in Asia, while others highlight novel information that can be obtained with this type of analysis, such as the major city with the highest percentage of people with a mustache

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers

    Full text link
    Group emotion recognition in the wild is a challenging problem, due to the unstructured environments in which everyday life pictures are taken. Some of the obstacles for an effective classification are occlusions, variable lighting conditions, and image quality. In this work we present a solution based on a novel combination of deep neural networks and Bayesian classifiers. The neural network works on a bottom-up approach, analyzing emotions expressed by isolated faces. The Bayesian classifier estimates a global emotion integrating top-down features obtained through a scene descriptor. In order to validate the system we tested the framework on the dataset released for the Emotion Recognition in the Wild Challenge 2017. Our method achieved an accuracy of 64.68% on the test set, significantly outperforming the 53.62% competition baseline.Comment: accepted by the Fifth Emotion Recognition in the Wild (EmotiW) Challenge 201

    The computer nose best

    Get PDF
    • …
    corecore