12,425 research outputs found

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning

    Full text link
    Deep learning (DL) models for tabular data problems are receiving increasingly more attention, while the algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution. Following the recent trends in other domains, such as natural language processing and computer vision, several retrieval-augmented tabular DL models have been recently proposed. For a given target object, a retrieval-based model retrieves other relevant objects, such as the nearest neighbors, from the available (training) data and uses their features or even labels to make a better prediction. However, we show that the existing retrieval-based tabular DL solutions provide only minor, if any, benefits over the properly tuned simple retrieval-free baselines. Thus, it remains unclear whether the retrieval-based approach is a worthy direction for tabular DL. In this work, we give a strong positive answer to this question. We start by incrementally augmenting a simple feed-forward architecture with an attention-like retrieval component similar to those of many (tabular) retrieval-based models. Then, we highlight several details of the attention mechanism that turn out to have a massive impact on the performance on tabular data problems, but that were not explored in prior work. As a result, we design TabR -- a simple retrieval-based tabular DL model which, on a set of public benchmarks, demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed ``GBDT-friendly'' benchmark (see the first figure).Comment: Code: https://github.com/yandex-research/tabular-dl-tab

    Machine Learning Approaches for the Prioritisation of Cardiovascular Disease Genes Following Genome- wide Association Study

    Get PDF
    Genome-wide association studies (GWAS) have revealed thousands of genetic loci, establishing itself as a valuable method for unravelling the complex biology of many diseases. As GWAS has grown in size and improved in study design to detect effects, identifying real causal signals, disentangling from other highly correlated markers associated by linkage disequilibrium (LD) remains challenging. This has severely limited GWAS findings and brought the method’s value into question. Although thousands of disease susceptibility loci have been reported, causal variants and genes at these loci remain elusive. Post-GWAS analysis aims to dissect the heterogeneity of variant and gene signals. In recent years, machine learning (ML) models have been developed for post-GWAS prioritisation. ML models have ranged from using logistic regression to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models (i.e., neural networks). When combined with functional validation, these methods have shown important translational insights, providing a strong evidence-based approach to direct post-GWAS research. However, ML approaches are in their infancy across biological applications, and as they continue to evolve an evaluation of their robustness for GWAS prioritisation is needed. Here, I investigate the landscape of ML across: selected models, input features, bias risk, and output model performance, with a focus on building a prioritisation framework that is applied to blood pressure GWAS results and tested on re-application to blood lipid traits

    Improving diagnostic procedures for epilepsy through automated recording and analysis of patients’ history

    Get PDF
    Transient loss of consciousness (TLOC) is a time-limited state of profound cognitive impairment characterised by amnesia, abnormal motor control, loss of responsiveness, a short duration and complete recovery. Most instances of TLOC are caused by one of three health conditions: epilepsy, functional (dissociative) seizures (FDS), or syncope. There is often a delay before the correct diagnosis is made and 10-20% of individuals initially receive an incorrect diagnosis. Clinical decision tools based on the endorsement of TLOC symptom lists have been limited to distinguishing between two causes of TLOC. The Initial Paroxysmal Event Profile (iPEP) has shown promise but was demonstrated to have greater accuracy in distinguishing between syncope and epilepsy or FDS than between epilepsy and FDS. The objective of this thesis was to investigate whether interactional, linguistic, and communicative differences in how people with epilepsy and people with FDS describe their experiences of TLOC can improve the predictive performance of the iPEP. An online web application was designed that collected information about TLOC symptoms and medical history from patients and witnesses using a binary questionnaire and verbal interaction with a virtual agent. We explored potential methods of automatically detecting these communicative differences, whether the differences were present during an interaction with a VA, to what extent these automatically detectable communicative differences improve the performance of the iPEP, and the acceptability of the application from the perspective of patients and witnesses. The two feature sets that were applied to previous doctor-patient interactions, features designed to measure formulation effort or detect semantic differences between the two groups, were able to predict the diagnosis with an accuracy of 71% and 81%, respectively. Individuals with epilepsy or FDS provided descriptions of TLOC to the VA that were qualitatively like those observed in previous research. Both feature sets were effective predictors of the diagnosis when applied to the web application recordings (85.7% and 85.7%). Overall, the accuracy of machine learning models trained for the threeway classification between epilepsy, FDS, and syncope using the iPEP responses from patients that were collected through the web application was worse than the performance observed in previous research (65.8% vs 78.3%), but the performance was increased by the inclusion of features extracted from the spoken descriptions on TLOC (85.5%). Finally, most participants who provided feedback reported that the online application was acceptable. These findings suggest that it is feasible to differentiate between people with epilepsy and people with FDS using an automated analysis of spoken seizure descriptions. Furthermore, incorporating these features into a clinical decision tool for TLOC can improve the predictive performance by improving the differential diagnosis between these two health conditions. Future research should use the feedback to improve the design of the application and increase perceived acceptability of the approach

    Automatic Feature Engineering for Time Series Classification: Evaluation and Discussion

    Full text link
    Time Series Classification (TSC) has received much attention in the past two decades and is still a crucial and challenging problem in data science and knowledge engineering. Indeed, along with the increasing availability of time series data, many TSC algorithms have been suggested by the research community in the literature. Besides state-of-the-art methods based on similarity measures, intervals, shapelets, dictionaries, deep learning methods or hybrid ensemble methods, several tools for extracting unsupervised informative summary statistics, aka features, from time series have been designed in the recent years. Originally designed for descriptive analysis and visualization of time series with informative and interpretable features, very few of these feature engineering tools have been benchmarked for TSC problems and compared with state-of-the-art TSC algorithms in terms of predictive performance. In this article, we aim at filling this gap and propose a simple TSC process to evaluate the potential predictive performance of the feature sets obtained with existing feature engineering tools. Thus, we present an empirical study of 11 feature engineering tools branched with 9 supervised classifiers over 112 time series data sets. The analysis of the results of more than 10000 learning experiments indicate that feature-based methods perform as accurately as current state-of-the-art TSC algorithms, and thus should rightfully be considered further in the TSC literature

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Optical Remote Sensing of Oil Spills by using Machine Learning Methods in the Persian Gulf: A Multi-Class Approach

    Get PDF
    Marine oil spills are harmful for the environment and costly for society. Coastal areas are particularly vulnerable since they provide habitats for organisms, animals and marine ecosystems. This thesis studied machine learning methods to classify thick oil in a multi-class case, using remotely sensed multi-spectral data in the Persian Gulf. The study area covers a large area between United Arab Emirates (UAE) and Iran. The dataset is extracted from 10 Sentinel-2 tiles on six spectral bands between 492 nm to 2202 nm. These images were annotated for four classes, namely thick oil, thin oil, ocean water and turbid water by using the Bonn Agreement to analyse true color composite images. A variety of machine learning methods were trained and evaluated using this dataset. Then a robustness evaluation was done by using selected machine learning methods on an independent dataset. Initially multiple machine learning methods were included; three decision trees, six K-Nearest Neighbor (KNN) models, two Artificial Neural Network (ANN) models, two Naive bayes models, and two discriminant models. Two KNN models and two ANN models were then picked for further evaluation. The results show that the fine KNN approach with two nearest neighbors had the best performance based on the computed statistical measures. However, the robustness evaluation showed that the tri-layered NN performed better. This thesis has shown that supervised machine learning with a multi-class approach can be used for oil spill monitoring using multi-spectral remote sensing data in the Persian Gulf

    Fairness Testing: A Comprehensive Survey and Analysis of Trends

    Full text link
    Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and concern among software engineers. To tackle this issue, extensive research has been dedicated to conducting fairness testing of ML software, and this paper offers a comprehensive survey of existing studies in this field. We collect 100 papers and organize them based on the testing workflow (i.e., how to test) and testing components (i.e., what to test). Furthermore, we analyze the research focus, trends, and promising directions in the realm of fairness testing. We also identify widely-adopted datasets and open-source tools for fairness testing

    Unified Explanations in Machine Learning Models: A Perturbation Approach

    Get PDF
    A high-velocity paradigm shift towards Explainable Artificial Intelligence (XAI) has emerged in recent years. Highly complex Machine Learning (ML) models have flourished in many tasks of intelligence, and the questions have started to shift away from traditional metrics of validity towards something deeper: What is this model telling me about my data, and how is it arriving at these conclusions? Previous work has uncovered predictive models generating explanations contrasting domain experts, or excessively exploiting bias in data that renders a model useless in highly-regulated settings. These inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches. To address these problems, we propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap). We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold. We propose a taxonomy for feature importance methodology, measure alignment, and observe quantifiable similarity amongst explanation models across several datasets

    Non-Intrusive Disaggregation of Advanced Metering Infrastructure Signals for Demand-Side Management

    Get PDF
    As intermittent renewable energy generation resources become more prevalent, innovative ways to manage the electric grid are sought. In the past, much of the grid balancing effort has been focused on the supply side or on demand-side management of large commercial or industrial electricity customers. Today, with the increase in enabling technologies such as Internet-connected appliances, home energy management systems, and advanced metering infrastructure (AMI) smart meters, residential demand-side management is also a possibility. For a utility to assess the potential capacity of residential demand-side flexibility, power data from controllable appliances from a large sample of houses is required. These data may be collected by installing time- and cost-intensive monitoring equipment at every site, or, alternatively, by disaggregating the signals communicated to the utility by AMI meters. In this study, non-intrusive load monitoring algorithms are used to disaggregate low-resolution real power signals from AMI smart meters. Disaggregation results using both supervised and unsupervised versions of a graph signal processing (GSP) -based algorithm are presented. The effects of varying key parameters in each GSP algorithm, including scaling factor, sequence, and classifier threshold are also presented, and limitations of the algorithm based on energy use patterns are discussed. FM values greater than 0.8 were achieved for the electric resistance water heater and electric vehicle charger using the unsupervised GSP algorithm. The disaggregated signals are then used to develop energy forecasting models for predicting the load of controllable appliances over a given demand response period. ARIMA, SVR, and LSTM forecasting methods were evaluated and compared to a baseline model developed using the mean hourly power draw values. The minimum MAAPE was achieved for the water heater, with an approximate range of 10 < MAAPE < 20. The total energy flexibility of each appliance and the associated uncertainty of the combined disaggregation and forecast are characterized to assess the feasibility of this approach for demand-side management applications. The framework presented in this study may be used to characterize the ability of signals to be disaggregated from a larger dataset of AMI data, based on the whole-house signal characteristics. This analysis can aid grid managers in assessing the viability of selected devices, such as the water heater, for demand response activities.Ph.D
    corecore