283 research outputs found

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Computing Large-Scale Matrix and Tensor Decomposition with Structured Factors: A Unified Nonconvex Optimization Perspective

    Full text link
    The proposed article aims at offering a comprehensive tutorial for the computational aspects of structured matrix and tensor factorization. Unlike existing tutorials that mainly focus on {\it algorithmic procedures} for a small set of problems, e.g., nonnegativity or sparsity-constrained factorization, we take a {\it top-down} approach: we start with general optimization theory (e.g., inexact and accelerated block coordinate descent, stochastic optimization, and Gauss-Newton methods) that covers a wide range of factorization problems with diverse constraints and regularization terms of engineering interest. Then, we go `under the hood' to showcase specific algorithm design under these introduced principles. We pay a particular attention to recent algorithmic developments in structured tensor and matrix factorization (e.g., random sketching and adaptive step size based stochastic optimization and structure-exploiting second-order algorithms), which are the state of the art---yet much less touched upon in the literature compared to {\it block coordinate descent} (BCD)-based methods. We expect that the article to have an educational values in the field of structured factorization and hope to stimulate more research in this important and exciting direction.Comment: Final Version; to appear in IEEE Signal Processing Magazine; title revised to comply with the journal's rul

    The average condition number of most tensor rank decomposition problems is infinite

    Full text link
    The tensor rank decomposition, or canonical polyadic decomposition, is the decomposition of a tensor into a sum of rank-1 tensors. The condition number of the tensor rank decomposition measures the sensitivity of the rank-1 summands with respect to structured perturbations. Those are perturbations preserving the rank of the tensor that is decomposed. On the other hand, the angular condition number measures the perturbations of the rank-1 summands up to scaling. We show for random rank-2 tensors with Gaussian density that the expected value of the condition number is infinite. Under some mild additional assumption, we show that the same is true for most higher ranks r≥3r\geq 3 as well. In fact, as the dimensions of the tensor tend to infinity, asymptotically all ranks are covered by our analysis. On the contrary, we show that rank-2 Gaussian tensors have finite expected angular condition number. Our results underline the high computational complexity of computing tensor rank decompositions. We discuss consequences of our results for algorithm design and for testing algorithms that compute the CPD. Finally, we supply numerical experiments

    Application Performance Modeling via Tensor Completion

    Full text link
    Performance tuning, software/hardware co-design, and job scheduling are among the many tasks that rely on models to predict application performance. We propose and evaluate low-rank tensor decomposition for modeling application performance. We discretize the input and configuration domains of an application using regular grids. Application execution times mapped within grid-cells are averaged and represented by tensor elements. We show that low-rank canonical-polyadic (CP) tensor decomposition is effective in approximating these tensors. We further show that this decomposition enables accurate extrapolation of unobserved regions of an application's parameter space. We then employ tensor completion to optimize a CP decomposition given a sparse set of observed execution times. We consider alternative piecewise/grid-based models and supervised learning models for six applications and demonstrate that CP decomposition optimized using tensor completion offers higher prediction accuracy and memory-efficiency for high-dimensional performance modeling

    Parallel Algorithms for Constrained Tensor Factorization via the Alternating Direction Method of Multipliers

    Full text link
    Tensor factorization has proven useful in a wide range of applications, from sensor array processing to communications, speech and audio signal processing, and machine learning. With few recent exceptions, all tensor factorization algorithms were originally developed for centralized, in-memory computation on a single machine; and the few that break away from this mold do not easily incorporate practically important constraints, such as nonnegativity. A new constrained tensor factorization framework is proposed in this paper, building upon the Alternating Direction method of Multipliers (ADMoM). It is shown that this simplifies computations, bypassing the need to solve constrained optimization problems in each iteration; and it naturally leads to distributed algorithms suitable for parallel implementation on regular high-performance computing (e.g., mesh) architectures. This opens the door for many emerging big data-enabled applications. The methodology is exemplified using nonnegativity as a baseline constraint, but the proposed framework can more-or-less readily incorporate many other types of constraints. Numerical experiments are very encouraging, indicating that the ADMoM-based nonnegative tensor factorization (NTF) has high potential as an alternative to state-of-the-art approaches.Comment: Submitted to the IEEE Transactions on Signal Processin
    • …
    corecore