238,196 research outputs found

    AKVSR: Audio Knowledge Empowered Visual Speech Recognition by Compressing Audio Knowledge of a Pretrained Model

    Full text link
    Visual Speech Recognition (VSR) is the task of predicting spoken words from silent lip movements. VSR is regarded as a challenging task because of the insufficient information on lip movements. In this paper, we propose an Audio Knowledge empowered Visual Speech Recognition framework (AKVSR) to complement the insufficient speech information of visual modality by using audio modality. Different from the previous methods, the proposed AKVSR 1) utilizes rich audio knowledge encoded by a large-scale pretrained audio model, 2) saves the linguistic information of audio knowledge in compact audio memory by discarding the non-linguistic information from the audio through quantization, and 3) includes Audio Bridging Module which can find the best-matched audio features from the compact audio memory, which makes our training possible without audio inputs, once after the compact audio memory is composed. We validate the effectiveness of the proposed method through extensive experiments, and achieve new state-of-the-art performances on the widely-used datasets, LRS2 and LRS3

    Hybrid Fusion Based Interpretable Multimodal Emotion Recognition with Limited Labelled Data

    Full text link
    This paper proposes a multimodal emotion recognition system, VIsual Spoken Textual Additive Net (VISTA Net), to classify emotions reflected by multimodal input containing image, speech, and text into discrete classes. A new interpretability technique, K-Average Additive exPlanation (KAAP), has also been developed that identifies important visual, spoken, and textual features leading to predicting a particular emotion class. The VISTA Net fuses information from image, speech, and text modalities using a hybrid of early and late fusion. It automatically adjusts the weights of their intermediate outputs while computing the weighted average. The KAAP technique computes the contribution of each modality and corresponding features toward predicting a particular emotion class. To mitigate the insufficiency of multimodal emotion datasets labeled with discrete emotion classes, we have constructed a large-scale IIT-R MMEmoRec dataset consisting of images, corresponding speech and text, and emotion labels ('angry,' 'happy,' 'hate,' and 'sad'). The VISTA Net has resulted in 95.99\% emotion recognition accuracy on the IIT-R MMEmoRec dataset on using visual, audio, and textual modalities, outperforming when using any one or two modalities

    Visual Speech Recognition for Languages with Limited Labeled Data using Automatic Labels from Whisper

    Full text link
    This paper proposes a powerful Visual Speech Recognition (VSR) method for multiple languages, especially for low-resource languages that have a limited number of labeled data. Different from previous methods that tried to improve the VSR performance for the target language by using knowledge learned from other languages, we explore whether we can increase the amount of training data itself for the different languages without human intervention. To this end, we employ a Whisper model which can conduct both language identification and audio-based speech recognition. It serves to filter data of the desired languages and transcribe labels from the unannotated, multilingual audio-visual data pool. By comparing the performances of VSR models trained on automatic labels and the human-annotated labels, we show that we can achieve similar VSR performance to that of human-annotated labels even without utilizing human annotations. Through the automated labeling process, we label large-scale unlabeled multilingual databases, VoxCeleb2 and AVSpeech, producing 1,002 hours of data for four low VSR resource languages, French, Italian, Spanish, and Portuguese. With the automatic labels, we achieve new state-of-the-art performance on mTEDx in four languages, significantly surpassing the previous methods. The automatic labels are available online: https://github.com/JeongHun0716/Visual-Speech-Recognition-for-Low-Resource-LanguagesComment: Accepted at ICASSP 202

    Transformer-Based Video Front-Ends for Audio-Visual Speech Recognition for Single and Multi-Person Video

    Full text link
    Audio-visual automatic speech recognition (AV-ASR) extends speech recognition by introducing the video modality as an additional source of information. In this work, the information contained in the motion of the speaker's mouth is used to augment the audio features. The video modality is traditionally processed with a 3D convolutional neural network (e.g. 3D version of VGG). Recently, image transformer networks arXiv:2010.11929 demonstrated the ability to extract rich visual features for image classification tasks. Here, we propose to replace the 3D convolution with a video transformer to extract visual features. We train our baselines and the proposed model on a large scale corpus of YouTube videos. The performance of our approach is evaluated on a labeled subset of YouTube videos as well as on the LRS3-TED public corpus. Our best video-only model obtains 31.4% WER on YTDEV18 and 17.0% on LRS3-TED, a 10% and 15% relative improvements over our convolutional baseline. We achieve the state of the art performance of the audio-visual recognition on the LRS3-TED after fine-tuning our model (1.6% WER). In addition, in a series of experiments on multi-person AV-ASR, we obtained an average relative reduction of 2% over our convolutional video frontend.Comment: 5 pages, 3 figures, published at Interspeech 202
    • …
    corecore