123,065 research outputs found

    Large-Scale Storage and Reasoning for Semantic Data Using Swarms

    Get PDF
    Scalable, adaptive and robust approaches to store and analyze the massive amounts of data expected from Semantic Web applications are needed to bring the Web of Data to its full potential. The solution at hand is to distribute both data and requests onto multiple computers. Apart from storage, the annotation of data with machine-processable semantics is essential for realizing the vision of the Semantic Web. Reasoning on webscale data faces the same requirements as storage. Swarm-based approaches have been shown to produce near-optimal solutions for hard problems in a completely decentralized way. We propose a novel concept for reasoning within a fully distributed and self-organized storage system that is based on the collective behavior of swarm individuals and does not require any schema replication. We show the general feasibility and efficiency of our approach with a proof-of-concept experiment of storage and reasoning performance. Thereby, we positively answer the research question of whether swarm-based approaches are useful in creating a large-scale distributed storage and reasoning system. © 2012 IEEE

    A scale-out RDF molecule store for distributed processing of biomedical data

    Get PDF
    The computational analysis of protein-protein interaction and biomolecular pathway data paves the way to efficient in silico drug discovery and therapeutic target identification. However, relevant data sources are currently distributed across a wide range of disparate, large-scale, publicly-available databases and repositories and are described using a wide range of taxonomies and ontologies. Sophisticated integration, manipulation, processing and analysis of these datasets are required in order to reveal previously undiscovered interactions and pathways that will lead to the discovery of new drugs. The BioMANTA project focuses on utilizing Semantic Web technologies together with a scale-out architecture to tackle the above challenges and to provide efficient analysis, querying, and reasoning about protein-protein interaction data. This paper describes the initial results of the BioMANTA project. The fully-developed system will allow knowledge representation and processing that are not currently available in typical scale-out or Semantic Web databases. We present the design of the architecture, basic ontology and some implementation details that aim to provide efficient, scalable RDF storage and inferencing. The results of initial performance evaluation are also provided

    VGStore: A Multimodal Extension to SPARQL for Querying RDF Scene Graph

    Full text link
    Semantic Web technology has successfully facilitated many RDF models with rich data representation methods. It also has the potential ability to represent and store multimodal knowledge bases such as multimodal scene graphs. However, most existing query languages, especially SPARQL, barely explore the implicit multimodal relationships like semantic similarity, spatial relations, etc. We first explored this issue by organizing a large-scale scene graph dataset, namely Visual Genome, in the RDF graph database. Based on the proposed RDF-stored multimodal scene graph, we extended SPARQL queries to answer questions containing relational reasoning about color, spatial, etc. Further demo (i.e., VGStore) shows the effectiveness of customized queries and displaying multimodal data.Comment: ISWC 2022 Posters, Demos, and Industry Track

    IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning

    Full text link
    Current visual question answering (VQA) tasks mainly consider answering human-annotated questions for natural images. However, aside from natural images, abstract diagrams with semantic richness are still understudied in visual understanding and reasoning research. In this work, we introduce a new challenge of Icon Question Answering (IconQA) with the goal of answering a question in an icon image context. We release IconQA, a large-scale dataset that consists of 107,439 questions and three sub-tasks: multi-image-choice, multi-text-choice, and filling-in-the-blank. The IconQA dataset is inspired by real-world diagram word problems that highlight the importance of abstract diagram understanding and comprehensive cognitive reasoning. Thus, IconQA requires not only perception skills like object recognition and text understanding, but also diverse cognitive reasoning skills, such as geometric reasoning, commonsense reasoning, and arithmetic reasoning. To facilitate potential IconQA models to learn semantic representations for icon images, we further release an icon dataset Icon645 which contains 645,687 colored icons on 377 classes. We conduct extensive user studies and blind experiments and reproduce a wide range of advanced VQA methods to benchmark the IconQA task. Also, we develop a strong IconQA baseline Patch-TRM that applies a pyramid cross-modal Transformer with input diagram embeddings pre-trained on the icon dataset. IconQA and Icon645 are available at https://iconqa.github.io.Comment: Corrected typos. Accepted to NeurIPS 2021, 27 pages, 18 figures. Data and code are available at https://iconqa.github.i

    A Universal Semantic-Geometric Representation for Robotic Manipulation

    Full text link
    Robots rely heavily on sensors, especially RGB and depth cameras, to perceive and interact with the world. RGB cameras record 2D images with rich semantic information while missing precise spatial information. On the other side, depth cameras offer critical 3D geometry data but capture limited semantics. Therefore, integrating both modalities is crucial for learning representations for robotic perception and control. However, current research predominantly focuses on only one of these modalities, neglecting the benefits of incorporating both. To this end, we present Semantic-Geometric Representation (SGR), a universal perception module for robotics that leverages the rich semantic information of large-scale pre-trained 2D models and inherits the merits of 3D spatial reasoning. Our experiments demonstrate that SGR empowers the agent to successfully complete a diverse range of simulated and real-world robotic manipulation tasks, outperforming state-of-the-art methods significantly in both single-task and multi-task settings. Furthermore, SGR possesses the unique capability to generalize to novel semantic attributes, setting it apart from the other methods

    How much semantic data on small devices?

    Get PDF
    Semantic tools such as triple stores, reasoners and query en- gines tend to be designed for large-scale applications. However, with the rise of sensor networks, smart-phones and smart-appliances, new scenar- ios appear where small devices with restricted resources have to handle limited amounts of data. It is therefore important to assess how ex- isting semantic tools behave on such small devices, and how much data they can reasonably handle. There exist benchmarks for comparing triple stores and query engines, but these benchmarks are targeting large-scale applications and would not be applicable in the considered scenarios. In this paper, we describe a set of small to medium scale benchmarks explicitly targeting applications on small devices. We describe the re- sult of applying these benchmarks on three different tools (Jena, Sesame and Mulgara) on the smallest existing netbook (the Asus EEE PC 700), showing how they can be used to test and compare semantic tools in resource-limited environments

    Towards Knowledge in the Cloud

    Get PDF
    Knowledge in the form of semantic data is becoming more and more ubiquitous, and the need for scalable, dynamic systems to support collaborative work with such distributed, heterogeneous knowledge arises. We extend the “data in the cloud” approach that is emerging today to “knowledge in the cloud”, with support for handling semantic information, organizing and finding it efficiently and providing reasoning and quality support. Both the life sciences and emergency response fields are identified as strong potential beneficiaries of having ”knowledge in the cloud”
    • …
    corecore