496 research outputs found

    Analysis of Crowdsourced Sampling Strategies for HodgeRank with Sparse Random Graphs

    Full text link
    Crowdsourcing platforms are now extensively used for conducting subjective pairwise comparison studies. In this setting, a pairwise comparison dataset is typically gathered via random sampling, either \emph{with} or \emph{without} replacement. In this paper, we use tools from random graph theory to analyze these two random sampling methods for the HodgeRank estimator. Using the Fiedler value of the graph as a measurement for estimator stability (informativeness), we provide a new estimate of the Fiedler value for these two random graph models. In the asymptotic limit as the number of vertices tends to infinity, we prove the validity of the estimate. Based on our findings, for a small number of items to be compared, we recommend a two-stage sampling strategy where a greedy sampling method is used initially and random sampling \emph{without} replacement is used in the second stage. When a large number of items is to be compared, we recommend random sampling with replacement as this is computationally inexpensive and trivially parallelizable. Experiments on synthetic and real-world datasets support our analysis

    Dynamic Estimation of Rater Reliability using Multi-Armed Bandits

    Get PDF
    One of the critical success factors for supervised machine learning is the quality of target values, or predictions, associated with training instances. Predictions can be discrete labels (such as a binary variable specifying whether a blog post is positive or negative) or continuous ratings (for instance, how boring a video is on a 10-point scale). In some areas, predictions are readily available, while in others, the eort of human workers has to be involved. For instance, in the task of emotion recognition from speech, a large corpus of speech recordings is usually available, and humans denote which emotions are present in which recordings

    Crowdsourcing for Engineering Design: Objective Evaluations and Subjective Preferences

    Full text link
    Crowdsourcing enables designers to reach out to large numbers of people who may not have been previously considered when designing a new product, listen to their input by aggregating their preferences and evaluations over potential designs, aiming to improve ``good'' and catch ``bad'' design decisions during the early-stage design process. This approach puts human designers--be they industrial designers, engineers, marketers, or executives--at the forefront, with computational crowdsourcing systems on the backend to aggregate subjective preferences (e.g., which next-generation Brand A design best competes stylistically with next-generation Brand B designs?) or objective evaluations (e.g., which military vehicle design has the best situational awareness?). These crowdsourcing aggregation systems are built using probabilistic approaches that account for the irrationality of human behavior (i.e., violations of reflexivity, symmetry, and transitivity), approximated by modern machine learning algorithms and optimization techniques as necessitated by the scale of data (millions of data points, hundreds of thousands of dimensions). This dissertation presents research findings suggesting the unsuitability of current off-the-shelf crowdsourcing aggregation algorithms for real engineering design tasks due to the sparsity of expertise in the crowd, and methods that mitigate this limitation by incorporating appropriate information for expertise prediction. Next, we introduce and interpret a number of new probabilistic models for crowdsourced design to provide large-scale preference prediction and full design space generation, building on statistical and machine learning techniques such as sampling methods, variational inference, and deep representation learning. Finally, we show how these models and algorithms can advance crowdsourcing systems by abstracting away the underlying appropriate yet unwieldy mathematics, to easier-to-use visual interfaces practical for engineering design companies and governmental agencies engaged in complex engineering systems design.PhDDesign ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133438/1/aburnap_1.pd
    corecore