105,192 research outputs found

    Large-Scale Experiments for Mathematical Document Classification

    Get PDF
    Abstract. The ever increasing amount of digitally available information is curse and blessing at the same time. On the one hand, users have increasingly large amounts of information at their fingertips. On the other hand, the assessment and refinement of web search results becomes more and more tiresome and difficult for non-experts in a domain. Therefore, established digital libraries offer specialized collections with a certain degree of quality. This quality can largely be attributed to the great effort invested into semantic enrichment of the provided documents e.g. by annotating their documents with respect to a domain-specific taxonomy. This process is still done manually in many domains, e.g. chemistry (CAS), medicine (MeSH), or mathematics (MSC). But due to the growing amount of data, this manual task gets more and more time consuming and expensive. The only solution for this problem seems to employ automated classification algorithms, but from evaluations done in previous research, conclusions to a real world scenario are difficult to make. We therefore conducted a large scale feasibility study on a real world data set from one of the biggest mathematical digital libraries, i.e. Zentralblatt MATH, with special focus on its practical applicability

    Symbol detection in online handwritten graphics using Faster R-CNN

    Full text link
    Symbol detection techniques in online handwritten graphics (e.g. diagrams and mathematical expressions) consist of methods specifically designed for a single graphic type. In this work, we evaluate the Faster R-CNN object detection algorithm as a general method for detection of symbols in handwritten graphics. We evaluate different configurations of the Faster R-CNN method, and point out issues relative to the handwritten nature of the data. Considering the online recognition context, we evaluate efficiency and accuracy trade-offs of using Deep Neural Networks of different complexities as feature extractors. We evaluate the method on publicly available flowchart and mathematical expression (CROHME-2016) datasets. Results show that Faster R-CNN can be effectively used on both datasets, enabling the possibility of developing general methods for symbol detection, and furthermore, general graphic understanding methods that could be built on top of the algorithm.Comment: Submitted to DAS-201

    Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition

    Full text link
    Handwritten mathematical expression recognition is a challenging problem due to the complicated two-dimensional structures, ambiguous handwriting input and variant scales of handwritten math symbols. To settle this problem, we utilize the attention based encoder-decoder model that recognizes mathematical expression images from two-dimensional layouts to one-dimensional LaTeX strings. We improve the encoder by employing densely connected convolutional networks as they can strengthen feature extraction and facilitate gradient propagation especially on a small training set. We also present a novel multi-scale attention model which is employed to deal with the recognition of math symbols in different scales and save the fine-grained details that will be dropped by pooling operations. Validated on the CROHME competition task, the proposed method significantly outperforms the state-of-the-art methods with an expression recognition accuracy of 52.8% on CROHME 2014 and 50.1% on CROHME 2016, by only using the official training dataset

    Character-level Convolutional Networks for Text Classification

    Get PDF
    This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.Comment: An early version of this work entitled "Text Understanding from Scratch" was posted in Feb 2015 as arXiv:1502.01710. The present paper has considerably more experimental results and a rewritten introduction, Advances in Neural Information Processing Systems 28 (NIPS 2015
    • …
    corecore