324 research outputs found

    Adherence and satisfaction of smartphone- And smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis : Nonrandomized interventional feasibility study

    Get PDF
    Background: Current clinical assessments of people with multiple sclerosis are episodic and may miss critical features of functional fluctuations between visits. Objective: The goal of the research was to assess the feasibility of remote active testing and passive monitoring using smartphones and smartwatch technology in people with multiple sclerosis with respect to adherence and satisfaction with the FLOODLIGHT test battery. Methods: People with multiple sclerosis (aged 20 to 57 years; Expanded Disability Status Scale 0-5.5; n=76) and healthy controls (n=25) performed the FLOODLIGHT test battery, comprising active tests (daily, weekly, every two weeks, or on demand) and passive monitoring (sensor-based gait and mobility) for 24 weeks using a smartphone and smartwatch. The primary analysis assessed adherence (proportion of weeks with at least 3 days of completed testing and 4 hours per day passive monitoring) and questionnaire-based satisfaction. In-clinic assessments (clinical and magnetic resonance imaging) were performed. Results: People with multiple sclerosis showed 70% (16.68/24 weeks) adherence to active tests and 79% (18.89/24 weeks) to passive monitoring; satisfaction score was on average 73.7 out of 100. Neither adherence nor satisfaction was associated with specific population characteristics. Test-battery assessments had an at least acceptable impact on daily activities in over 80% (61/72) of people with multiple sclerosis. Conclusions: People with multiple sclerosis were engaged and satisfied with the FLOODLIGHT test battery. FLOODLIGHT sensor-based measures may enable continuous assessment of multiple sclerosis disease in clinical trials and real-world settings

    Designing socially acceptable mHealth technologies for Parkinson's disease self-management

    Get PDF
    Mobile health (mHealth) technologies for Parkinson’s disease management have developed quickly in recent years. Research in this area typically focuses on evaluation of the accuracy and reliability of the technology, often to the exclusion of social factors and patient perspectives. This qualitative systematic review aimed to investigate the barriers to and facilitators of use mHealth technologies for disease self-management from the perspective of People with Parkinson's (PwP). Findings revealed that technological, as well as social, and financial factors are key considerations for mHealth design, to ensure its acceptability, and long-term use by PwP. This study proposes that a co-design approach could contribute to the design and development of mHealth that are socially acceptable to PwP, and enable their successful long-term use in the context of daily life.Mobile health (mHealth) technologies for Parkinson’s disease management have developed quickly in recent years. Research in this area typically focuses on evaluation of the accuracy and reliability of the technology, often to the exclusion of social factors and patient perspectives. This qualitative systematic review aimed to investigate the barriers to and facilitators of use mHealth technologies for disease self-management from the perspective of People with Parkinson's (PwP). Findings revealed that technological, as well as social, and financial factors are key considerations for mHealth design, to ensure its acceptability, and long-term use by PwP. This study proposes that a co-design approach could contribute to the design and development of mHealth that are socially acceptable to PwP, and enable their successful long-term use in the context of daily life

    Adherence and satisfaction of smartphone- and smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis: nonrandomized interventional feasibility study

    Get PDF
    Smartphone; Multiple sclerosis; Patient adherenceTeléfono inteligente; Esclerosis múltiple; Adherencia del pacienteTelèfon intel·ligent; Esclerosi múltiple; Adherència del pacientBackground: Current clinical assessments of people with multiple sclerosis are episodic and may miss critical features of functional fluctuations between visits. Objective: The goal of the research was to assess the feasibility of remote active testing and passive monitoring using smartphones and smartwatch technology in people with multiple sclerosis with respect to adherence and satisfaction with the FLOODLIGHT test battery. Methods: People with multiple sclerosis (aged 20 to 57 years; Expanded Disability Status Scale 0-5.5; n=76) and healthy controls (n=25) performed the FLOODLIGHT test battery, comprising active tests (daily, weekly, every two weeks, or on demand) and passive monitoring (sensor-based gait and mobility) for 24 weeks using a smartphone and smartwatch. The primary analysis assessed adherence (proportion of weeks with at least 3 days of completed testing and 4 hours per day passive monitoring) and questionnaire-based satisfaction. In-clinic assessments (clinical and magnetic resonance imaging) were performed. Results: People with multiple sclerosis showed 70% (16.68/24 weeks) adherence to active tests and 79% (18.89/24 weeks) to passive monitoring; satisfaction score was on average 73.7 out of 100. Neither adherence nor satisfaction was associated with specific population characteristics. Test-battery assessments had an at least acceptable impact on daily activities in over 80% (61/72) of people with multiple sclerosis

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    The use of wearable/portable digital sensors in Huntington’s disease: a systematic review

    Get PDF
    In chronic neurological conditions, wearable/portable devices have potential as innovative tools to detect subtle early disease manifestations and disease fluctuations for the purpose of clinical diagnosis, care and therapeutic development. Huntington’s disease (HD) has a unique combination of motor and non-motor features which, combined with recent and anticipated therapeutic progress, gives great potential for such devices to prove useful. The present work aims to provide a comprehensive account of the use of wearable/portable devices in HD and of what they have contributed so far. We conducted a systematic review searching MEDLINE, Embase, and IEEE Xplore. Thirty references were identified. Our results revealed large variability in the types of sensors used, study design, and the measured outcomes. Digital technologies show considerable promise for therapeutic research and clinical management of HD. However, more studies with standardized devices and harmonized protocols are needed to optimize the potential applicability of wearable/portable devices in HD

    Functional mobility in Parkinson’s disease

    Get PDF
    Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting 1% of the world population over the age of 60. The presence of a large and heterogeneous spectrum of motor and non-motor symptoms, some resistant to levodopa therapy, is usually a major source of disability that affects patients’ daily activities and social participation. Functional mobility (FM) is an outcome that merges the concepts of function with mobility, autonomy, and the accomplishment of daily tasks in different environments. Its use in PD studies is common. However, several aspects associated with its application in PD remain to be defined, hampering a wider use of the concept in clinical practice and the comparison of clinical study results. Aim: This thesis aimed to provide evidence on the appropriateness of the concept of FM in the PD field. A two-fold approach was used to this end: 1) To investigate the clinical and research applicability of the concept of FM in PD; 2) To identify the most suitable clinical and technological outcome measures for evaluating the response of PD patients’ FM to a therapeutic intervention. Methods: A narrative review using the framework of the International Classification of Functioning, Disability, and Health (ICF) was performed to explore the concept of FM when applied to PD. This first study aimed to provide a better understanding of the interaction between PD symptoms, FM, and patients’ daily activities and social participation. To identify and recommend the most suitable outcome measures to assess FM in PD, a systematic review was conducted using the CENTRAL, MEDLINE, Embase, and PEDro databases, from their inception to January 2019. During this review, we also explored the different definitions of FM present in the literature, proposing the one we believed should be established as the definition of FM in the PD field. We then conducted a focus group to explore PD patients' and health professionals’ perspectives on the proposed definition. Part of the scope of the focus group was also to investigate the impact of FM problems on patients’ daily living and the strategies used to deal with this. The study included four focus groups, two with patients (early and advanced disease stages), and two with health professionals (neurologists and physiotherapists). A second systematic review using the CENTRAL, MEDLINE, Embase, and PEDro databases, from their inception to September 2019, was performed to summarize and critically appraise the published evidence on PD spatiotemporal gait parameters. Finally, a pragmatic clinical study was conducted to identify the clinical and technological outcome measures that better predict changes in FM, when patients are submitted to a specialized multidisciplinary program for PD. Results: All the definitions found in an open search of the literature on the FM concept included three key aspects: gait, balance, and transfers. All participants in the focus group study were able to present a spontaneous definition of FM that matched the one used by the authors. All also agreed that FM reflects the difficulties of PD patients in daily life activities. Early-stage PD patients mentioned needing more time to complete their usual tasks, while advanced-stage PD patients considered FM limitations as the main limiting factor of daily activities, especially in medication “OFF” periods. Physiotherapists maintained that the management of PD FM limitations should be a joint work of the multidisciplinary team. For neurologists, FM may better express patients’ perception of their overall health status and may help to adopt a more patient-centered approach. Of the 95 studies included in the systematic review aiming to appraise the outcome measures that have been used to assess FM in PD patients, only one defined the concept of FM. The most frequent terms used as synonyms of FM were mobility, mobility in association with functional activities/performance, motor function, gait-related activity, or balance. In the literature, the Timed Up and Go (TUG) test was the most frequently reported tool used as a single instrument to assess FM in PD. The changes from baseline in the TUG Cognitive test, step length, and free-living step time asymmetry were identified as the best predictors of TUG changes. Conclusion: The information generated by the different studies included in this thesis revealed FM as a useful concept to be adopted in the PD field. FM was shown to be a meaningful outcome (for patients and health professionals), easy to measure, and able to provide more global and ecological information on patients’ daily living performances. Our results support the use of FM for PD assessment and free-living monitoring, as a way to better understand and address patients’ needs. The changes in the TUG Cognitive test, the supervised step length, and the free-living step time asymmetry seem the most suitable outcomes to measure an effect in FM. Future research should focus on determining the severity cut-off for FM changes, the minimal clinical important difference (MCID) for each of these outcome measures and resolve the current obstacles to the widespread use of technological assessments in PD clinical practice and research

    Development of a Sensor-Based Behavioral Monitoring Solution to Support Dementia Care

    Get PDF
    Background: Mobile and wearable technology presents exciting opportunities for monitoring behavior using widely available sensor data. This could support clinical research and practice aimed at improving quality of life among the growing number of people with dementia. However, it requires suitable tools for measuring behavior in a natural real-life setting that can be easily implemented by others. Objective: The objectives of this study were to develop and test a set of algorithms for measuring mobility and activity and to describe a technical setup for collecting the sensor data that these algorithms require using off-the-shelf devices. Methods: A mobility measurement module was developed to extract travel trajectories and home location from raw GPS (global positioning system) data and to use this information to calculate a set of spatial, temporal, and count-based mobility metrics. Activity measurement comprises activity bout extraction from recognized activity data and daily step counts. Location, activity, and step count data were collected using smartwatches and mobile phones, relying on open-source resources as far as possible for accessing data from device sensors. The behavioral monitoring solution was evaluated among 5 healthy subjects who simultaneously logged their movements for 1 week. Results: The evaluation showed that the behavioral monitoring solution successfully measures travel trajectories and mobility metrics from location data and extracts multimodal activity bouts during travel between locations. While step count could be used to indicate overall daily activity level, a concern was raised regarding device validity for step count measurement, which was substantially higher from the smartwatches than the mobile phones. Conclusions: This study contributes to clinical research and practice by providing a comprehensive behavioral monitoring solution for use in a real-life setting that can be replicated for a range of applications where knowledge about individual mobility and activity is relevant

    Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study

    Get PDF
    Background: Wearable sensors have been used successfully to characterize bradykinetic gait in patients with Parkinson disease (PD), but most studies to date have been conducted in highly controlled laboratory environments. Objective: This paper aims to assess whether sensor-based analysis of real-life gait can be used to objectively and remotely monitor motor fluctuations in PD. Methods: The Parkinson@Home validation study provides a new reference data set for the development of digital biomarkers to monitor persons with PD in daily life. Specifically, a group of 25 patients with PD with motor fluctuations and 25 age-matched controls performed unscripted daily activities in and around their homes for at least one hour while being recorded on video. Patients with PD did this twice: once after overnight withdrawal of dopaminergic medication and again 1 hour after medication intake. Participants wore sensors on both wrists and ankles, on the lower back, and in the front pants pocket, capturing movement and contextual data. Gait segments of 25 seconds were extracted from accelerometer signals based on manual video annotations. The power spectral density of each segment and device was estimated using Welch’s method, from which the total power in the 0.5- to 10-Hz band, width of the dominant frequency, and cadence were derived. The ability to discriminate between before and after medication intake and between patients with PD and controls was evaluated using leave-one-subject-out nested cross-validation. Results: From 18 patients with PD (11 men; median age 65 years) and 24 controls (13 men; median age 68 years), ≥10 gait segments were available. Using logistic LASSO (least absolute shrinkage and selection operator) regression, we classified whether the unscripted gait segments occurred before or after medication intake, with mean area under the receiver operator curves (AUCs) varying between 0.70 (ankle of least affected side, 95% CI 0.60-0.81) and 0.82 (ankle of most affected side, 95% CI 0.72-0.92) across sensor locations. Combining all sensor locations did not significantly improve classification (AUC 0.84, 95% CI 0.75-0.93). Of all signal properties, the total power in the 0.5- to 10-Hz band was most responsive to dopaminergic medication. Discriminating between patients with PD and controls was generally more difficult (AUC of all sensor locations combined: 0.76, 95% CI 0.62-0.90). The video recordings revealed that the positioning of the hands during real-life gait had a substantial impact on the power spectral density of both the wrist and pants pocket sensor. Conclusions: We present a new video-referenced data set that includes unscripted activities in and around the participants’ homes. Using this data set, we show the feasibility of using sensor-based analysis of real-life gait to monitor motor fluctuations with a single sensor location. Future work may assess the value of contextual sensors to control for real-world confounders

    Adapting Mobile and Wearable Technology to Provide Support and Monitoring in Rehabilitation for Dementia:Feasibility Case Series

    Get PDF
    Background: Mobile and wearable devices are increasingly being used to support our everyday lives and track our behavior. Since daily support and behavior tracking are two core components of cognitive rehabilitation, such personal devices could be employed in rehabilitation approaches aimed at improving independence and engagement among people with dementia. Objective: The aim of this work was to investigate the feasibility of using smartphones and smartwatches to augment rehabilitation by providing adaptable, personalized support and objective, continuous measures of mobility and activity behavior. Methods: A feasibility study comprising 6 in-depth case studies was carried out among people with early-stage dementia and their caregivers. Participants used a smartphone and smartwatch for 8 weeks for personalized support and followed goals for quality of life. Data were collected from device sensors and logs, mobile self-reports, assessments, weekly phone calls, and interviews. This data were analyzed to evaluate the utility of sensor data generated by devices used by people with dementia in an everyday life context; this was done to compare objective measures with subjective reports of mobility and activity and to examine technology acceptance focusing on usefulness and health efficacy. Results: Adequate sensor data was generated to reveal behavioral patterns, even for minimal device use. Objective mobility and activity measures reflecting fluctuations in participants’ self-reported behavior, especially when combined, may be advantageous in revealing gradual trends and could provide detailed insights regarding goal attainment ratings. Personalized support benefited all participants to varying degrees by addressing functional, memory, safety, and psychosocial needs. A total of 4 of 6 (67%) participants felt motivated to be active by tracking their step count. One participant described a highly positive impact on mobility, anxiety, mood, and caregiver burden, mainly as a result of navigation support and location-tracking tools. Conclusions: Smartphones and wearables could provide beneficial and pervasive support and monitoring for rehabilitation among people with dementia. These results substantiate the need for further investigation on a larger scale, especially considering the inevitable presence of mobile and wearable technology in our everyday lives for years to come
    • …
    corecore