6,623 research outputs found

    Large scale distributed neural network training through online distillation

    Full text link
    Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing 6×10116\times 10^{11} tokens and based on the Common Crawl repository of web data.Comment: Clarify that implementations should use available parallelism in pseudo-cod

    Knowledge Distillation by On-the-Fly Native Ensemble

    Full text link
    Knowledge distillation is effective to train small and generalisable network models for meeting the low-memory and fast running requirements. Existing offline distillation methods rely on a strong pre-trained teacher, which enables favourable knowledge discovery and transfer but requires a complex two-phase training procedure. Online counterparts address this limitation at the price of lacking a highcapacity teacher. In this work, we present an On-the-fly Native Ensemble (ONE) strategy for one-stage online distillation. Specifically, ONE trains only a single multi-branch network while simultaneously establishing a strong teacher on-the- fly to enhance the learning of target network. Extensive evaluations show that ONE improves the generalisation performance a variety of deep neural networks more significantly than alternative methods on four image classification dataset: CIFAR10, CIFAR100, SVHN, and ImageNet, whilst having the computational efficiency advantages.Comment: To appear in NIPS201

    Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System

    Full text link
    We propose a novel way to train ranking models, such as recommender systems, that are both effective and efficient. Knowledge distillation (KD) was shown to be successful in image recognition to achieve both effectiveness and efficiency. We propose a KD technique for learning to rank problems, called \emph{ranking distillation (RD)}. Specifically, we train a smaller student model to learn to rank documents/items from both the training data and the supervision of a larger teacher model. The student model achieves a similar ranking performance to that of the large teacher model, but its smaller model size makes the online inference more efficient. RD is flexible because it is orthogonal to the choices of ranking models for the teacher and student. We address the challenges of RD for ranking problems. The experiments on public data sets and state-of-the-art recommendation models showed that RD achieves its design purposes: the student model learnt with RD has a model size less than half of the teacher model while achieving a ranking performance similar to the teacher model and much better than the student model learnt without RD.Comment: Accepted at KDD 201

    Feature Fusion for Online Mutual Knowledge Distillation

    Full text link
    We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of parallel neural networks as sub-networks, then we combine the feature maps from each sub-network using a fusion module to create a more meaningful feature map. The fused feature map is passed into the fused classifier for overall classification. Unlike existing feature fusion methods, in our framework, an ensemble of sub-network classifiers transfers its knowledge to the fused classifier and then the fused classifier delivers its knowledge back to each sub-network, mutually teaching one another in an online-knowledge distillation manner. This mutually teaching system not only improves the performance of the fused classifier but also obtains performance gain in each sub-network. Moreover, our model is more beneficial because different types of network can be used for each sub-network. We have performed a variety of experiments on multiple datasets such as CIFAR-10, CIFAR-100 and ImageNet and proved that our method is more effective than other alternative methods in terms of performance of both sub-networks and the fused classifier.Comment: International Conference on Pattern Recognitio

    Pseudo-Rehearsal: Achieving Deep Reinforcement Learning without Catastrophic Forgetting

    Full text link
    Neural networks can achieve excellent results in a wide variety of applications. However, when they attempt to sequentially learn, they tend to learn the new task while catastrophically forgetting previous ones. We propose a model that overcomes catastrophic forgetting in sequential reinforcement learning by combining ideas from continual learning in both the image classification domain and the reinforcement learning domain. This model features a dual memory system which separates continual learning from reinforcement learning and a pseudo-rehearsal system that "recalls" items representative of previous tasks via a deep generative network. Our model sequentially learns Atari 2600 games while continuing to perform above human level and equally well as independent models trained separately on each game. This result is achieved without: demanding additional storage requirements as the number of tasks increases, storing raw data or revisiting past tasks. In comparison, previous state-of-the-art solutions are substantially more vulnerable to forgetting on these complex deep reinforcement learning tasks

    Correlation Congruence for Knowledge Distillation

    Full text link
    Most teacher-student frameworks based on knowledge distillation (KD) depend on a strong congruent constraint on instance level. However, they usually ignore the correlation between multiple instances, which is also valuable for knowledge transfer. In this work, we propose a new framework named correlation congruence for knowledge distillation (CCKD), which transfers not only the instance-level information, but also the correlation between instances. Furthermore, a generalized kernel method based on Taylor series expansion is proposed to better capture the correlation between instances. Empirical experiments and ablation studies on image classification tasks (including CIFAR-100, ImageNet-1K) and metric learning tasks (including ReID and Face Recognition) show that the proposed CCKD substantially outperforms the original KD and achieves state-of-the-art accuracy compared with other SOTA KD-based methods. The CCKD can be easily deployed in the majority of the teacher-student framework such as KD and hint-based learning methods

    Progress & Compress: A scalable framework for continual learning

    Full text link
    We introduce a conceptually simple and scalable framework for continual learning domains where tasks are learned sequentially. Our method is constant in the number of parameters and is designed to preserve performance on previously encountered tasks while accelerating learning progress on subsequent problems. This is achieved by training a network with two components: A knowledge base, capable of solving previously encountered problems, which is connected to an active column that is employed to efficiently learn the current task. After learning a new task, the active column is distilled into the knowledge base, taking care to protect any previously acquired skills. This cycle of active learning (progression) followed by consolidation (compression) requires no architecture growth, no access to or storing of previous data or tasks, and no task-specific parameters. We demonstrate the progress & compress approach on sequential classification of handwritten alphabets as well as two reinforcement learning domains: Atari games and 3D maze navigation.Comment: Accepted at ICML 201

    Recent Advances in Convolutional Neural Network Acceleration

    Full text link
    In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and weight sharing, can reduce the number of parameters and increase processing speed during training and inference. However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN's further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research papers. We propose a taxonomy in terms of three levels, i.e.~structure level, algorithm level, and implementation level, for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression, algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives of these acceleration and optimization methods within each level. The discussion shows that the methods in each level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a comprehensive reference for researchers who are interested in CNN acceleration.Comment: submitted to Neurocomputin

    Accelerating Large Scale Knowledge Distillation via Dynamic Importance Sampling

    Full text link
    Knowledge distillation is an effective technique that transfers knowledge from a large teacher model to a shallow student. However, just like massive classification, large scale knowledge distillation also imposes heavy computational costs on training models of deep neural networks, as the softmax activations at the last layer involve computing probabilities over numerous classes. In this work, we apply the idea of importance sampling which is often used in Neural Machine Translation on large scale knowledge distillation. We present a method called dynamic importance sampling, where ranked classes are sampled from a dynamic distribution derived from the interaction between the teacher and student in full distillation. We highlight the utility of our proposal prior which helps the student capture the main information in the loss function. Our approach manages to reduce the computational cost at training time while maintaining the competitive performance on CIFAR-100 and Market-1501 person re-identification datasets

    A Survey of Model Compression and Acceleration for Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past five years, tremendous progress has been made in this area. In this paper, we review the recent techniques for compacting and accelerating DNN models. In general, these techniques are divided into four categories: parameter pruning and quantization, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and quantization are described first, after that the other techniques are introduced. For each category, we also provide insightful analysis about the performance, related applications, advantages, and drawbacks. Then we go through some very recent successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrices, the main datasets used for evaluating the model performance, and recent benchmark efforts. Finally, we conclude this paper, discuss remaining the challenges and possible directions for future work.Comment: Published in IEEE Signal Processing Magazine, updated version including more recent work
    • …
    corecore