570,422 research outputs found

    Resolvent of Large Random Graphs

    Full text link
    We analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. We apply these results to graphs converging locally to trees and derive a new formula for the Stieljes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdos-Renyi graphs and preferential attachment graphs. We sketch examples of application for weighted graphs, bipartite graphs and the uniform spanning tree of n vertices.Comment: 21 pages, 1 figur

    On random k-out sub-graphs of large graphs

    Full text link
    We consider random sub-graphs of a fixed graph G=(V,E)G=(V,E) with large minimum degree. We fix a positive integer kk and let GkG_k be the random sub-graph where each vVv\in V independently chooses kk random neighbors, making knkn edges in all. When the minimum degree δ(G)(12+ϵ)n,n=V\delta(G)\geq (\frac12+\epsilon)n,\,n=|V| then GkG_k is kk-connected w.h.p. for k=O(1)k=O(1); Hamiltonian for kk sufficiently large. When δ(G)m\delta(G) \geq m, then GkG_k has a cycle of length (1ϵ)m(1-\epsilon)m for kkϵk\geq k_\epsilon. By w.h.p. we mean that the probability of non-occurrence can be bounded by a function ϕ(n)\phi(n) (or ϕ(m)\phi(m)) where limnϕ(n)=0\lim_{n\to\infty}\phi(n)=0

    Estimating and Sampling Graphs with Multidimensional Random Walks

    Full text link
    Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Random walks, which normally require fewer resources per sample, can suffer from large estimation errors in the presence of disconnected or loosely connected graphs. In this work we propose a new mm-dimensional random walk that uses mm dependent random walkers. We show that the proposed sampling method, which we call Frontier sampling, exhibits all of the nice sampling properties of a regular random walk. At the same time, our simulations over large real world graphs show that, in the presence of disconnected or loosely connected components, Frontier sampling exhibits lower estimation errors than regular random walks. We also show that Frontier sampling is more suitable than random vertex sampling to sample the tail of the degree distribution of the graph

    Asymptotics of the partition function of Ising model on inhomogeneous random graphs

    Full text link
    For a finite random graph, we defined a simple model of statistical mechanics. We obtain an annealed asymptotic result for the random partition function for this model on finite random graphs as n; the size of the graph is very large. To obtain this result, we define the empirical bond distribution, which enumerates the number of bonds between a given couple of spins, and empirical spin distribution, which enumerates the number of sites having a given spin on the spinned random graphs. For these empirical distributions we extend the large deviation principle(LDP) to cover random graphs with continuous colour laws. Applying Varandhan Lemma and this LDP to the Hamiltonian of the Ising model defined on Erdos-Renyi graphs, expressed as a function of the empirical distributions, we obtain our annealed asymptotic result.Comment: 14 page

    Local algorithms, regular graphs of large girth, and random regular graphs

    Full text link
    We introduce a general class of algorithms and supply a number of general results useful for analysing these algorithms when applied to regular graphs of large girth. As a result, we can transfer a number of results proved for random regular graphs into (deterministic) results about all regular graphs with sufficiently large girth. This is an uncommon direction of transfer of results, which is usually from the deterministic setting to the random one. In particular, this approach enables, for the first time, the achievement of results equivalent to those obtained on random regular graphs by a powerful class of algorithms which contain prioritised actions. As examples, we obtain new upper or lower bounds on the size of maximum independent sets, minimum dominating sets, maximum and minimum bisection, maximum kk-independent sets, minimum kk-dominating sets and minimum connected and weakly-connected dominating sets in rr-regular graphs with large girth.Comment: Third version: no changes were made to the file. We would like to point out that this paper was split into two parts in the publication process. General theorems are in a paper with the same title, accepted by Combinatorica. The applications of Section 9 are in a paper entitled "Properties of regular graphs with large girth via local algorithms", published by JCTB, doi 10.1016/j.jctb.2016.07.00

    Sampling Geometric Inhomogeneous Random Graphs in Linear Time

    Get PDF
    Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. Instead of studying directly hyperbolic random graphs, we use a generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behaviour of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by this new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) As our main contribution we provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a substantial factor O(n^0.5). (2) We establish that GIRGs have clustering coefficients in {\Omega}(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits.Comment: 25 page
    corecore