47 research outputs found

    Throughput Scaling Laws for Wireless Networks with Fading Channels

    Full text link
    A network of n communication links, operating over a shared wireless channel, is considered. Fading is assumed to be the dominant factor affecting the strength of the channels between transmitter and receiver terminals. It is assumed that each link can be active and transmit with a constant power P or remain silent. The objective is to maximize the throughput over the selection of active links. By deriving an upper bound and a lower bound, it is shown that in the case of Rayleigh fading (i) the maximum throughput scales like log⁥n\log n (ii) the maximum throughput is achievable in a distributed fashion. The upper bound is obtained using probabilistic methods, where the key point is to upper bound the throughput of any random set of active links by a chi-squared random variable. To obtain the lower bound, a decentralized link activation strategy is proposed and analyzed.Comment: Submitted to IEEE Transactions on Information Theory (Revised

    E2XLRADR (Energy Efficient Cross Layer Routing Algorithm with Dynamic Retransmission for Wireless Sensor Networks)

    Full text link
    The main focus of this article is to achieve prolonged network lifetime with overall energy efficiency in wireless sensor networks through controlled utilization of limited energy. Major percentage of energy in wireless sensor network is consumed during routing from source to destination, retransmission of data on packet loss. For improvement, cross layered algorithm is proposed for routing and retransmission scheme. Simulation and results shows that this approach can save the overall energy consumptio

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Impact of Correlated Mobility on Delay-Throughput Performance in Mobile Ad-Hoc Networks

    Get PDF
    Abstract—We extend the analysis of the scaling laws of wireless ad hoc networks to the case of correlated nodes movements, which are commonly found in real mobility processes. We consider a simple version of the Reference Point Group Mobility model, in which nodes belonging to the same group are constrained to lie in a disc area, whose center moves uniformly across the network according to the i.i.d. model. We assume fast mobility conditions, and take as primary goal the maximization of pernode throughput. We discover that correlated node movements have huge impact on asymptotic throughput and delay, and can sometimes lead to better performance than the one achievable under independent nodes movements. I. INTRODUCTION AND RELATED WORK In the last few years the store-carry-forward communication paradigm, which allows nodes to physically carry buffered dat

    Random Access Transport Capacity

    Full text link
    We develop a new metric for quantifying end-to-end throughput in multihop wireless networks, which we term random access transport capacity, since the interference model presumes uncoordinated transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions, multiplied by the communication distance, and normalized by the network area. We show that a simple upper bound on this quantity is computable in closed-form in terms of key network parameters when the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a line between the source and destination. We also derive the optimum number of hops and optimal per hop success probability and show that our result follows the well-known square root scaling law while providing exact expressions for the preconstants as well. Numerical results demonstrate that the upper bound is accurate for the purpose of determining the optimal hop count and success (or outage) probability.Comment: Submitted to IEEE Trans. on Wireless Communications, Sept. 200

    Rate-Constrained Wireless Networks with Fading Channels: Interference-Limited and Noise-Limited Regimes

    Full text link
    A network of nn wireless communication links is considered in a Rayleigh fading environment. It is assumed that each link can be active and transmit with a constant power PP or remain silent. The objective is to maximize the number of active links such that each active link can transmit with a constant rate λ\lambda. An upper bound is derived that shows the number of active links scales at most like 1λlog⁥n\frac{1}{\lambda} \log n. To obtain a lower bound, a decentralized link activation strategy is described and analyzed. It is shown that for small values of λ\lambda, the number of supported links by this strategy meets the upper bound; however, as λ\lambda grows, this number becomes far below the upper bound. To shrink the gap between the upper bound and the achievability result, a modified link activation strategy is proposed and analyzed based on some results from random graph theory. It is shown that this modified strategy performs very close to the optimum. Specifically, this strategy is \emph{asymptotically almost surely} optimum when λ\lambda approaches ∞\infty or 0. It turns out the optimality results are obtained in an interference-limited regime. It is demonstrated that, by proper selection of the algorithm parameters, the proposed scheme also allows the network to operate in a noise-limited regime in which the transmission rates can be adjusted by the transmission powers. The price for this flexibility is a decrease in the throughput scaling law by a multiplicative factor of log⁥log⁥n\log \log n.Comment: Submitted to IEEE Trans. Information Theor

    On Space-Time Capacity Limits in Mobile and Delay Tolerant Networks

    Get PDF
    We investigate the fundamental capacity limits of space-time journeys of information in mobile and Delay Tolerant Networks (DTNs), where information is either transmitted or carried by mobile nodes, using store-carry-forward routing. We define the capacity of a journey (i.e., a path in space and time, from a source to a destination) as the maximum amount of data that can be transferred from the source to the destination in the given journey. Combining a stochastic model (conveying all possible journeys) and an analysis of the durations of the nodes' encounters, we study the properties of journeys that maximize the space-time information propagation capacity, in bit-meters per second. More specifically, we provide theoretical lower and upper bounds on the information propagation speed, as a function of the journey capacity. In the particular case of random way-point-like models (i.e., when nodes move for a distance of the order of the network domain size before changing direction), we show that, for relatively large journey capacities, the information propagation speed is of the same order as the mobile node speed. This implies that, surprisingly, in sparse but large-scale mobile DTNs, the space-time information propagation capacity in bit-meters per second remains proportional to the mobile node speed and to the size of the transported data bundles, when the bundles are relatively large. We also verify that all our analytical bounds are accurate in several simulation scenarios.Comment: Part of this work will be presented in "On Space-Time Capacity Limits in Mobile and Delay Tolerant Networks", P. Jacquet, B. Mans and G. Rodolakis, IEEE Infocom, 201

    Parallel Opportunistic Routing in Wireless Networks

    Full text link
    We study benefits of opportunistic routing in a large wireless ad hoc network by examining how the power, delay, and total throughput scale as the number of source- destination pairs increases up to the operating maximum. Our opportunistic routing is novel in a sense that it is massively parallel, i.e., it is performed by many nodes simultaneously to maximize the opportunistic gain while controlling the inter-user interference. The scaling behavior of conventional multi-hop transmission that does not employ opportunistic routing is also examined for comparison. Our results indicate that our opportunistic routing can exhibit a net improvement in overall power--delay trade-off over the conventional routing by providing up to a logarithmic boost in the scaling law. Such a gain is possible since the receivers can tolerate more interference due to the increased received signal power provided by the multi-user diversity gain, which means that having more simultaneous transmissions is possible.Comment: 18 pages, 7 figures, Under Review for Possible Publication in IEEE Transactions on Information Theor
    corecore