2,931 research outputs found

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Robust Location-Aided Beam Alignment in Millimeter Wave Massive MIMO

    Full text link
    Location-aided beam alignment has been proposed recently as a potential approach for fast link establishment in millimeter wave (mmWave) massive MIMO (mMIMO) communications. However, due to mobility and other imperfections in the estimation process, the spatial information obtained at the base station (BS) and the user (UE) is likely to be noisy, degrading beam alignment performance. In this paper, we introduce a robust beam alignment framework in order to exhibit resilience with respect to this problem. We first recast beam alignment as a decentralized coordination problem where BS and UE seek coordination on the basis of correlated yet individual position information. We formulate the optimum beam alignment solution as the solution of a Bayesian team decision problem. We then propose a suite of algorithms to approach optimality with reduced complexity. The effectiveness of the robust beam alignment procedure, compared with classical designs, is then verified on simulation settings with varying location information accuracies.Comment: 24 pages, 7 figures. The short version of this paper has been accepted to IEEE Globecom 201
    • …
    corecore