6 research outputs found

    R-FCN-3000 at 30fps: Decoupling Detection and Classification

    Full text link
    We present R-FCN-3000, a large-scale real-time object detector in which objectness detection and classification are decoupled. To obtain the detection score for an RoI, we multiply the objectness score with the fine-grained classification score. Our approach is a modification of the R-FCN architecture in which position-sensitive filters are shared across different object classes for performing localization. For fine-grained classification, these position-sensitive filters are not needed. R-FCN-3000 obtains an mAP of 34.9% on the ImageNet detection dataset and outperforms YOLO-9000 by 18% while processing 30 images per second. We also show that the objectness learned by R-FCN-3000 generalizes to novel classes and the performance increases with the number of training object classes - supporting the hypothesis that it is possible to learn a universal objectness detector. Code will be made available.Comment: CVPR 2018 submissio

    Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

    Full text link
    Recent advances in vision tasks (e.g., segmentation) highly depend on the availability of large-scale real-world image annotations obtained by cumbersome human labors. Moreover, the perception performance often drops significantly for new scenarios, due to the poor generalization capability of models trained on limited and biased annotations. In this work, we resort to transfer knowledge from automatically rendered scene annotations in virtual-world to facilitate real-world visual tasks. Although virtual-world annotations can be ideally diverse and unlimited, the discrepant data distributions between virtual and real-world make it challenging for knowledge transferring. We thus propose a novel Semantic-aware Grad-GAN (SG-GAN) to perform virtual-to-real domain adaption with the ability of retaining vital semantic information. Beyond the simple holistic color/texture transformation achieved by prior works, SG-GAN successfully personalizes the appearance adaption for each semantic region in order to preserve their key characteristic for better recognition. It presents two main contributions to traditional GANs: 1) a soft gradient-sensitive objective for keeping semantic boundaries; 2) a semantic-aware discriminator for validating the fidelity of personalized adaptions with respect to each semantic region. Qualitative and quantitative experiments demonstrate the superiority of our SG-GAN in scene adaption over state-of-the-art GANs. Further evaluations on semantic segmentation on Cityscapes show using adapted virtual images by SG-GAN dramatically improves segmentation performance than original virtual data. We release our code at https://github.com/Peilun-Li/SG-GAN.Comment: In proceedings of BMVC 201

    Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

    Full text link
    Weakly Supervised Object Localization (WSOL) methods only require image level labels as opposed to expensive bounding box annotations required by fully supervised algorithms. We study the problem of learning localization model on target classes with weakly supervised image labels, helped by a fully annotated source dataset. Typically, a WSOL model is first trained to predict class generic objectness scores on an off-the-shelf fully supervised source dataset and then it is progressively adapted to learn the objects in the weakly supervised target dataset. In this work, we argue that learning only an objectness function is a weak form of knowledge transfer and propose to learn a classwise pairwise similarity function that directly compares two input proposals as well. The combined localization model and the estimated object annotations are jointly learned in an alternating optimization paradigm as is typically done in standard WSOL methods. In contrast to the existing work that learns pairwise similarities, our approach optimizes a unified objective with convergence guarantee and it is computationally efficient for large-scale applications. Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function. For instance, in the ILSVRC dataset, the Correct Localization (CorLoc) performance improves from 72.8% to 78.2% which is a new state-of-the-art for WSOL task in the context of knowledge transfer.Comment: ECCV 2020. formerly "In Defense of Graph Inference Algorithms for Weakly Supervised Object Localization

    What leads to generalization of object proposals?

    Full text link
    Object proposal generation is often the first step in many detection models. It is lucrative to train a good proposal model, that generalizes to unseen classes. This could help scaling detection models to larger number of classes with fewer annotations. Motivated by this, we study how a detection model trained on a small set of source classes can provide proposals that generalize to unseen classes. We systematically study the properties of the dataset - visual diversity and label space granularity - required for good generalization. We show the trade-off between using fine-grained labels and coarse labels. We introduce the idea of prototypical classes: a set of sufficient and necessary classes required to train a detection model to obtain generalized proposals in a more data-efficient way. On the Open Images V4 dataset, we show that only 25% of the classes can be selected to form such a prototypical set. The resulting proposals from a model trained with these classes is only 4.3% worse than using all the classes, in terms of average recall (AR). We also demonstrate that Faster R-CNN model leads to better generalization of proposals compared to a single-stage network like RetinaNet

    Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer

    Full text link
    In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This setting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of 59.7%59.7\% detection performance on the VOC test set and an mAP of 60.2%60.2\% after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code: \url{https://github.com/mikuhatsune/wsod_transfer}.Comment: ECCV 2020. Code: https://github.com/mikuhatsune/wsod_transfe

    AMIL: Adversarial Multi Instance Learning for Human Pose Estimation

    Full text link
    Human pose estimation has an important impact on a wide range of applications from human-computer interface to surveillance and content-based video retrieval. For human pose estimation, joint obstructions and overlapping upon human bodies result in departed pose estimation. To address these problems, by integrating priors of the structure of human bodies, we present a novel structure-aware network to discreetly consider such priors during the training of the network. Typically, learning such constraints is a challenging task. Instead, we propose generative adversarial networks as our learning model in which we design two residual multiple instance learning (MIL) models with the identical architecture, one is used as the generator and the other one is used as the discriminator. The discriminator task is to distinguish the actual poses from the fake ones. If the pose generator generates the results that the discriminator is not able to distinguish from the real ones, the model has successfully learnt the priors. In the proposed model, the discriminator differentiates the ground-truth heatmaps from the generated ones, and later the adversarial loss back-propagates to the generator. Such procedure assists the generator to learn reasonable body configurations and is proved to be advantageous to improve the pose estimation accuracy. Meanwhile, we propose a novel function for MIL. It is an adjustable structure for both instance selection and modeling to appropriately pass the information between instances in a single bag. In the proposed residual MIL neural network, the pooling action adequately updates the instance contribution to its bag. The proposed adversarial residual multi-instance neural network that is based on pooling has been validated on two datasets for the human pose estimation task and successfully outperforms the other state-of-arts models
    corecore