30,845 research outputs found

    A Discriminatively Learned CNN Embedding for Person Re-identification

    Full text link
    We revisit two popular convolutional neural networks (CNN) in person re-identification (re-ID), i.e, verification and classification models. The two models have their respective advantages and limitations due to different loss functions. In this paper, we shed light on how to combine the two models to learn more discriminative pedestrian descriptors. Specifically, we propose a new siamese network that simultaneously computes identification loss and verification loss. Given a pair of training images, the network predicts the identities of the two images and whether they belong to the same identity. Our network learns a discriminative embedding and a similarity measurement at the same time, thus making full usage of the annotations. Albeit simple, the learned embedding improves the state-of-the-art performance on two public person re-ID benchmarks. Further, we show our architecture can also be applied in image retrieval

    Comparator Networks

    Full text link
    The objective of this work is set-based verification, e.g. to decide if two sets of images of a face are of the same person or not. The traditional approach to this problem is to learn to generate a feature vector per image, aggregate them into one vector to represent the set, and then compute the cosine similarity between sets. Instead, we design a neural network architecture that can directly learn set-wise verification. Our contributions are: (i) We propose a Deep Comparator Network (DCN) that can ingest a pair of sets (each may contain a variable number of images) as inputs, and compute a similarity between the pair--this involves attending to multiple discriminative local regions (landmarks), and comparing local descriptors between pairs of faces; (ii) To encourage high-quality representations for each set, internal competition is introduced for recalibration based on the landmark score; (iii) Inspired by image retrieval, a novel hard sample mining regime is proposed to control the sampling process, such that the DCN is complementary to the standard image classification models. Evaluations on the IARPA Janus face recognition benchmarks show that the comparator networks outperform the previous state-of-the-art results by a large margin.Comment: To appear in ECCV 201

    A Deep Four-Stream Siamese Convolutional Neural Network with Joint Verification and Identification Loss for Person Re-detection

    Full text link
    State-of-the-art person re-identification systems that employ a triplet based deep network suffer from a poor generalization capability. In this paper, we propose a four stream Siamese deep convolutional neural network for person redetection that jointly optimises verification and identification losses over a four image input group. Specifically, the proposed method overcomes the weakness of the typical triplet formulation by using groups of four images featuring two matched (i.e. the same identity) and two mismatched images. This allows us to jointly increase the interclass variations and reduce the intra-class variations in the learned feature space. The proposed approach also optimises over both the identification and verification losses, further minimising intra-class variation and maximising inter-class variation, improving overall performance. Extensive experiments on four challenging datasets, VIPeR, CUHK01, CUHK03 and PRID2011, demonstrates that the proposed approach achieves state-of-the-art performance.Comment: Published in WACV 201
    • …
    corecore