26,148 research outputs found

    Weighted simplicial complex reconstruction from mobile laser scanning using sensor topology

    Full text link
    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points, weighted according to its distance to the sensor, and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create and filter triangles for each triplet of self-connected edges and according to their local planarity. We compare our results to an unweighted simplicial complex reconstruction.Comment: 8 pages, 11 figures, CFPT 2018. arXiv admin note: substantial text overlap with arXiv:1802.0748

    Mesh-based 3D Textured Urban Mapping

    Get PDF
    In the era of autonomous driving, urban mapping represents a core step to let vehicles interact with the urban context. Successful mapping algorithms have been proposed in the last decade building the map leveraging on data from a single sensor. The focus of the system presented in this paper is twofold: the joint estimation of a 3D map from lidar data and images, based on a 3D mesh, and its texturing. Indeed, even if most surveying vehicles for mapping are endowed by cameras and lidar, existing mapping algorithms usually rely on either images or lidar data; moreover both image-based and lidar-based systems often represent the map as a point cloud, while a continuous textured mesh representation would be useful for visualization and navigation purposes. In the proposed framework, we join the accuracy of the 3D lidar data, and the dense information and appearance carried by the images, in estimating a visibility consistent map upon the lidar measurements, and refining it photometrically through the acquired images. We evaluate the proposed framework against the KITTI dataset and we show the performance improvement with respect to two state of the art urban mapping algorithms, and two widely used surface reconstruction algorithms in Computer Graphics.Comment: accepted at iros 201
    • …
    corecore