3 research outputs found

    Distill2Vec: Dynamic Graph Representation Learning with Knowledge Distillation

    Full text link
    Dynamic graph representation learning strategies are based on different neural architectures to capture the graph evolution over time. However, the underlying neural architectures require a large amount of parameters to train and suffer from high online inference latency, that is several model parameters have to be updated when new data arrive online. In this study we propose Distill2Vec, a knowledge distillation strategy to train a compact model with a low number of trainable parameters, so as to reduce the latency of online inference and maintain the model accuracy high. We design a distillation loss function based on Kullback-Leibler divergence to transfer the acquired knowledge from a teacher model trained on offline data, to a small-size student model for online data. Our experiments with publicly available datasets show the superiority of our proposed model over several state-of-the-art approaches with relative gains up to 5% in the link prediction task. In addition, we demonstrate the effectiveness of our knowledge distillation strategy, in terms of number of required parameters, where Distill2Vec achieves a compression ratio up to 7:100 when compared with baseline approaches. For reproduction purposes, our implementation is publicly available at https://stefanosantaris.github.io/Distill2Vec

    A Survey on Dynamic Network Embedding

    Full text link
    Real-world networks are composed of diverse interacting and evolving entities, while most of existing researches simply characterize them as particular static networks, without consideration of the evolution trend in dynamic networks. Recently, significant progresses in tracking the properties of dynamic networks have been made, which exploit changes of entities and links in the network to devise network embedding techniques. Compared to widely proposed static network embedding methods, dynamic network embedding endeavors to encode nodes as low-dimensional dense representations that effectively preserve the network structures and the temporal dynamics, which is beneficial to multifarious downstream machine learning tasks. In this paper, we conduct a systematical survey on dynamic network embedding. In specific, basic concepts of dynamic network embedding are described, notably, we propose a novel taxonomy of existing dynamic network embedding techniques for the first time, including matrix factorization based, Skip-Gram based, autoencoder based, neural networks based and other embedding methods. Additionally, we carefully summarize the commonly used datasets and a wide variety of subsequent tasks that dynamic network embedding can benefit. Afterwards and primarily, we suggest several challenges that the existing algorithms faced and outline possible directions to facilitate the future research, such as dynamic embedding models, large-scale dynamic networks, heterogeneous dynamic networks, dynamic attributed networks, task-oriented dynamic network embedding and more embedding spaces.Comment: 25 page

    A Survey on Embedding Dynamic Graphs

    Full text link
    Embedding static graphs in low-dimensional vector spaces plays a key role in network analytics and inference, supporting applications like node classification, link prediction, and graph visualization. However, many real-world networks present dynamic behavior, including topological evolution, feature evolution, and diffusion. Therefore, several methods for embedding dynamic graphs have been proposed to learn network representations over time, facing novel challenges, such as time-domain modeling, temporal features to be captured, and the temporal granularity to be embedded. In this survey, we overview dynamic graph embedding, discussing its fundamentals and the recent advances developed so far. We introduce the formal definition of dynamic graph embedding, focusing on the problem setting and introducing a novel taxonomy for dynamic graph embedding input and output. We further explore different dynamic behaviors that may be encompassed by embeddings, classifying by topological evolution, feature evolution, and processes on networks. Afterward, we describe existing techniques and propose a taxonomy for dynamic graph embedding techniques based on algorithmic approaches, from matrix and tensor factorization to deep learning, random walks, and temporal point processes. We also elucidate main applications, including dynamic link prediction, anomaly detection, and diffusion prediction, and we further state some promising research directions in the area.Comment: 41 pages, 10 figure
    corecore