12 research outputs found

    Large Scale Evolution of Convolutional Neural Networks Using Volunteer Computing

    Full text link
    This work presents a new algorithm called evolutionary exploration of augmenting convolutional topologies (EXACT), which is capable of evolving the structure of convolutional neural networks (CNNs). EXACT is in part modeled after the neuroevolution of augmenting topologies (NEAT) algorithm, with notable exceptions to allow it to scale to large scale distributed computing environments and evolve networks with convolutional filters. In addition to multithreaded and MPI versions, EXACT has been implemented as part of a BOINC volunteer computing project, allowing large scale evolution. During a period of two months, over 4,500 volunteered computers on the Citizen Science Grid trained over 120,000 CNNs and evolved networks reaching 98.32% test data accuracy on the MNIST handwritten digits dataset. These results are even stronger as the backpropagation strategy used to train the CNNs was fairly rudimentary (ReLU units, L2 regularization and Nesterov momentum) and these were initial test runs done without refinement of the backpropagation hyperparameters. Further, the EXACT evolutionary strategy is independent of the method used to train the CNNs, so they could be further improved by advanced techniques like elastic distortions, pretraining and dropout. The evolved networks are also quite interesting, showing "organic" structures and significant differences from standard human designed architectures.Comment: 17 pages, 13 figures. Submitted to the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017

    EDEN: Evolutionary Deep Networks for Efficient Machine Learning

    Full text link
    Deep neural networks continue to show improved performance with increasing depth, an encouraging trend that implies an explosion in the possible permutations of network architectures and hyperparameters for which there is little intuitive guidance. To address this increasing complexity, we propose Evolutionary DEep Networks (EDEN), a computationally efficient neuro-evolutionary algorithm which interfaces to any deep neural network platform, such as TensorFlow. We show that EDEN evolves simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters. Evaluation of EDEN across seven image and sentiment classification datasets shows that it reliably finds good networks -- and in three cases achieves state-of-the-art results -- even on a single GPU, in just 6-24 hours. Our study provides a first attempt at applying neuro-evolution to the creation of 1D convolutional networks for sentiment analysis including the optimisation of the embedding layer.Comment: 7 pages, 3 figures, 3 tables and see video https://vimeo.com/23451009

    Evolutionary Construction of Convolutional Neural Networks

    Full text link
    Neuro-Evolution is a field of study that has recently gained significantly increased traction in the deep learning community. It combines deep neural networks and evolutionary algorithms to improve and/or automate the construction of neural networks. Recent Neuro-Evolution approaches have shown promising results, rivaling hand-crafted neural networks in terms of accuracy. A two-step approach is introduced where a convolutional autoencoder is created that efficiently compresses the input data in the first step, and a convolutional neural network is created to classify the compressed data in the second step. The creation of networks in both steps is guided by by an evolutionary process, where new networks are constantly being generated by mutating members of a collection of existing networks. Additionally, a method is introduced that considers the trade-off between compression and information loss of different convolutional autoencoders. This is used to select the optimal convolutional autoencoder from among those evolved to compress the data for the second step. The complete framework is implemented, tested on the popular CIFAR-10 data set, and the results are discussed. Finally, a number of possible directions for future work with this particular framework in mind are considered, including opportunities to improve its efficiency and its application in particular areas

    Image Classification for Breast Cancer Using a Modified Convolution Neural Network Architecture

    Get PDF
    The most common type of cancer that results in death is breast cancer. In the world, millions of people struggle with this disease. Breast cancer can affect men and women but women are more affected. For awareness, it is necessary to understand the sign and symptoms of breast cancer. The most common sign is an abnormal lump in the breast. But there may be many reasons of develop abnormal lumps. Computer-Aided Diagnosis (CAD) is extensively used in pathological image analysis to help pathologists enhance diagnosis efficiency, accuracy, and consistency. Recent studies have looked into deep learning methodologies to improve the effectiveness of pathological CAD

    Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges

    Get PDF
    A variety of methods have been applied to the architectural configuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimisation and training of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. While many works exist in the literature, no comprehensive surveys currently exist focusing exclusively on the strengths and limitations of using neuroevolution approaches in DNNs. Prolonged absence of such surveys can lead to a disjointed and fragmented field preventing DNNs researchers potentially adopting neuroevolutionary methods in their own research, resulting in lost opportunities for improving performance and wider application within real-world deep learning problems. This paper presents a comprehensive survey, discussion and evaluation of the state-of-the-art works on using EAs for architectural configuration and training of DNNs. Based on this survey, the paper highlights the most pertinent current issues and challenges in neuroevolution and identifies multiple promising future research directions.Comment: 20 pages (double column), 2 figures, 3 tables, 157 reference

    Optimization of convolutional neural networks for image classification using genetic algorithms and bayesian optimization

    Get PDF
    Notwithstanding the recent successes of deep convolutional neural networks for classification tasks, they are sensitive to the selection of their hyperparameters, which impose an exponentially large search space on modern convolutional models. Traditional hyperparameter selection methods include manual, grid, or random search, but these require expert knowledge or are computationally burdensome. Divergently, Bayesian optimization and evolutionary inspired techniques have surfaced as viable alternatives to the hyperparameter problem. Thus, an alternative hybrid approach that combines the advantages of these techniques is proposed. Specifically, the search space is partitioned into discrete-architectural, and continuous and categorical hyperparameter subspaces, which are respectively traversed by a stochastic genetic search, followed by a genetic-Bayesian search. Simulations on a prominent image classification task reveal that the proposed method results in an overall classification accuracy improvement of 0.87% over unoptimized baselines, and a greater than 97% reduction in computational costs compared to a commonly employed brute force approach.Electrical and Mining EngineeringM. Tech. (Electrical Engineering
    corecore