4,369 research outputs found

    TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification

    Full text link
    This paper describes the participation of the team "TwiSE" in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely "Sentiment Analysis in Twitter" for which we implemented sentiment classification systems for subtasks A, B, C and D. Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.\footnote{We make the code available for research purposes at \url{https://github.com/balikasg/SemEval2016-Twitter\_Sentiment\_Evaluation}.

    Distributed Machine Learning via Sufficient Factor Broadcasting

    Full text link
    Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems starting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter synchronization costs that greatly slow down distributed learning. To address this issue, we propose a Sufficient Factor Broadcasting (SFB) computation model for efficient distributed learning of a large family of matrix-parameterized models, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e., the outer product of two "sufficient factors" (SFs). By broadcasting the SFs among worker machines and reconstructing the update matrices locally at each worker, SFB improves communication efficiency --- communication costs are linear in the parameter matrix's dimensions, rather than quadratic --- without affecting computational correctness. We present a theoretical convergence analysis of SFB, and empirically corroborate its efficiency on four different matrix-parametrized ML models

    Discriminative Features via Generalized Eigenvectors

    Full text link
    Representing examples in a way that is compatible with the underlying classifier can greatly enhance the performance of a learning system. In this paper we investigate scalable techniques for inducing discriminative features by taking advantage of simple second order structure in the data. We focus on multiclass classification and show that features extracted from the generalized eigenvectors of the class conditional second moments lead to classifiers with excellent empirical performance. Moreover, these features have attractive theoretical properties, such as inducing representations that are invariant to linear transformations of the input. We evaluate classifiers built from these features on three different tasks, obtaining state of the art results

    Distribution matching for transduction

    Get PDF
    Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets. We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation. At its heart we exploit the fact that for a good learner the distributions over the outputs on training and test sets should match. This is a classical two-sample problem which can be solved efficiently in its most general form by using distance measures in Hilbert Space. It turns out that a number of existing heuristics can be viewed as special cases of our approach.

    Axiomatic Interpretability for Multiclass Additive Models

    Full text link
    Generalized additive models (GAMs) are favored in many regression and binary classification problems because they are able to fit complex, nonlinear functions while still remaining interpretable. In the first part of this paper, we generalize a state-of-the-art GAM learning algorithm based on boosted trees to the multiclass setting, and show that this multiclass algorithm outperforms existing GAM learning algorithms and sometimes matches the performance of full complexity models such as gradient boosted trees. In the second part, we turn our attention to the interpretability of GAMs in the multiclass setting. Surprisingly, the natural interpretability of GAMs breaks down when there are more than two classes. Naive interpretation of multiclass GAMs can lead to false conclusions. Inspired by binary GAMs, we identify two axioms that any additive model must satisfy in order to not be visually misleading. We then develop a technique called Additive Post-Processing for Interpretability (API), that provably transforms a pre-trained additive model to satisfy the interpretability axioms without sacrificing accuracy. The technique works not just on models trained with our learning algorithm, but on any multiclass additive model, including multiclass linear and logistic regression. We demonstrate the effectiveness of API on a 12-class infant mortality dataset.Comment: KDD 201
    • …
    corecore