57,035 research outputs found

    Active classification with comparison queries

    Full text link
    We study an extension of active learning in which the learning algorithm may ask the annotator to compare the distances of two examples from the boundary of their label-class. For example, in a recommendation system application (say for restaurants), the annotator may be asked whether she liked or disliked a specific restaurant (a label query); or which one of two restaurants did she like more (a comparison query). We focus on the class of half spaces, and show that under natural assumptions, such as large margin or bounded bit-description of the input examples, it is possible to reveal all the labels of a sample of size nn using approximately O(logn)O(\log n) queries. This implies an exponential improvement over classical active learning, where only label queries are allowed. We complement these results by showing that if any of these assumptions is removed then, in the worst case, Ω(n)\Omega(n) queries are required. Our results follow from a new general framework of active learning with additional queries. We identify a combinatorial dimension, called the \emph{inference dimension}, that captures the query complexity when each additional query is determined by O(1)O(1) examples (such as comparison queries, each of which is determined by the two compared examples). Our results for half spaces follow by bounding the inference dimension in the cases discussed above.Comment: 23 pages (not including references), 1 figure. The new version contains a minor fix in the proof of Lemma 4.

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback

    Multi-utility Learning: Structured-output Learning with Multiple Annotation-specific Loss Functions

    Full text link
    Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used
    corecore