2,465,387 research outputs found

    Large Margin Neural Language Model

    Full text link
    We propose a large margin criterion for training neural language models. Conventionally, neural language models are trained by minimizing perplexity (PPL) on grammatical sentences. However, we demonstrate that PPL may not be the best metric to optimize in some tasks, and further propose a large margin formulation. The proposed method aims to enlarge the margin between the "good" and "bad" sentences in a task-specific sense. It is trained end-to-end and can be widely applied to tasks that involve re-scoring of generated text. Compared with minimum-PPL training, our method gains up to 1.1 WER reduction for speech recognition and 1.0 BLEU increase for machine translation.Comment: 9 pages. Accepted as a long paper in EMNLP201

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    A Unified Multilingual Handwriting Recognition System using multigrams sub-lexical units

    Full text link
    We address the design of a unified multilingual system for handwriting recognition. Most of multi- lingual systems rests on specialized models that are trained on a single language and one of them is selected at test time. While some recognition systems are based on a unified optical model, dealing with a unified language model remains a major issue, as traditional language models are generally trained on corpora composed of large word lexicons per language. Here, we bring a solution by con- sidering language models based on sub-lexical units, called multigrams. Dealing with multigrams strongly reduces the lexicon size and thus decreases the language model complexity. This makes pos- sible the design of an end-to-end unified multilingual recognition system where both a single optical model and a single language model are trained on all the languages. We discuss the impact of the language unification on each model and show that our system reaches state-of-the-art methods perfor- mance with a strong reduction of the complexity.Comment: preprin

    RNN Language Model with Word Clustering and Class-based Output Layer

    Get PDF
    The recurrent neural network language model (RNNLM) has shown significant promise for statistical language modeling. In this work, a new class-based output layer method is introduced to further improve the RNNLM. In this method, word class information is incorporated into the output layer by utilizing the Brown clustering algorithm to estimate a class-based language model. Experimental results show that the new output layer with word clustering not only improves the convergence obviously but also reduces the perplexity and word error rate in large vocabulary continuous speech recognition

    Distributed XQuery

    Get PDF
    XQuery is increasingly being used for ad-hoc integration of heterogeneous data sources that are logically mapped to XML. For example, scientists need to query multiple scientific databases, which are distributed over a large geographic area, and it is possible to use XQuery for that. However, the language currently supports only the data shipping query evaluation model (through the document() function): it fetches all data sources to a single server, then runs the query there. This is a major limitation for many applications, especially when some data sources are very large, or when a data source is only a virtual XML view over some other logical data model. We propose here a simple extension to XQuery that allows query shipping to be expressed in the language, in addition to data shipping

    Slim Embedding Layers for Recurrent Neural Language Models

    Full text link
    Recurrent neural language models are the state-of-the-art models for language modeling. When the vocabulary size is large, the space taken to store the model parameters becomes the bottleneck for the use of recurrent neural language models. In this paper, we introduce a simple space compression method that randomly shares the structured parameters at both the input and output embedding layers of the recurrent neural language models to significantly reduce the size of model parameters, but still compactly represent the original input and output embedding layers. The method is easy to implement and tune. Experiments on several data sets show that the new method can get similar perplexity and BLEU score results while only using a very tiny fraction of parameters.Comment: To appear at AAAI 201
    corecore