2 research outputs found

    Laplacian Change Point Detection for Dynamic Graphs

    Full text link
    Dynamic and temporal graphs are rich data structures that are used to model complex relationships between entities over time. In particular, anomaly detection in temporal graphs is crucial for many real world applications such as intrusion identification in network systems, detection of ecosystem disturbances and detection of epidemic outbreaks. In this paper, we focus on change point detection in dynamic graphs and address two main challenges associated with this problem: I) how to compare graph snapshots across time, II) how to capture temporal dependencies. To solve the above challenges, we propose Laplacian Anomaly Detection (LAD) which uses the spectrum of the Laplacian matrix of the graph structure at each snapshot to obtain low dimensional embeddings. LAD explicitly models short term and long term dependencies by applying two sliding windows. In synthetic experiments, LAD outperforms the state-of-the-art method. We also evaluate our method on three real dynamic networks: UCI message network, US senate co-sponsorship network and Canadian bill voting network. In all three datasets, we demonstrate that our method can more effectively identify anomalous time points according to significant real world events.Comment: in KDD 2020, 10 page

    A Hierarchical Framework with Spatio-Temporal Consistency Learning for Emergence Detection in Complex Adaptive Systems

    Full text link
    Emergence, a global property of complex adaptive systems (CASs) constituted by interactive agents, is prevalent in real-world dynamic systems, e.g., network-level traffic congestions. Detecting its formation and evaporation helps to monitor the state of a system, allowing to issue a warning signal for harmful emergent phenomena. Since there is no centralized controller of CAS, detecting emergence based on each agent's local observation is desirable but challenging. Existing works are unable to capture emergence-related spatial patterns, and fail to model the nonlinear relationships among agents. This paper proposes a hierarchical framework with spatio-temporal consistency learning to solve these two problems by learning the system representation and agent representations, respectively. Especially, spatio-temporal encoders are tailored to capture agents' nonlinear relationships and the system's complex evolution. Representations of the agents and the system are learned by preserving the intrinsic spatio-temporal consistency in a self-supervised manner. Our method achieves more accurate detection than traditional methods and deep learning methods on three datasets with well-known yet hard-to-detect emergent behaviors. Notably, our hierarchical framework is generic, which can employ other deep learning methods for agent-level and system-level detection.Comment: 18 pages, under revie
    corecore