17,796 research outputs found

    A finite element modelling methodology for the non-linear stiffness evaluation of adhesively bonded single lap-joints. Part 2, Novel shell mesh to minimise analysis time

    Get PDF
    A new modelling methodology is presented that enables the stiffness of adhesively bonded single lap-joints to be included in the finite element analysis of whole vehicle bodies. This work was driven by the need to significantly reduce computing resources for vehicle analysis. To achieve this goal the adhesive bond line and adherends are modelled by a relatively ‘small’ number of shell elements to replace the usual solid element mesh for a reliable analysis. Previous work in Part 1 has provided the necessary background information to develop and verify the new finite element analysis that reduces the solution runtime by a factor of 1000. Although a joint’s non-linear stiffness is reliably simulated to failure load, it is recognised by the authors that the coarse shell mesh cannot provide accurate peak stresses or peak strains for the successful application of a numerical failure criterion. Given that the new modelling methodology is very quick to apply to existing shell models of vehicle bodies, it is recommended for use by the stress analyst who requires, say at the preliminary design stage, whole vehicle stiffness performance in a significantly reduced timeframe

    The Computational Power of Minkowski Spacetime

    Full text link
    The Lorentzian length of a timelike curve connecting both endpoints of a classical computation is a function of the path taken through Minkowski spacetime. The associated runtime difference is due to time-dilation: the phenomenon whereby an observer finds that another's physically identical ideal clock has ticked at a different rate than their own clock. Using ideas appearing in the framework of computational complexity theory, time-dilation is quantified as an algorithmic resource by relating relativistic energy to an nnth order polynomial time reduction at the completion of an observer's journey. These results enable a comparison between the optimal quadratic \emph{Grover speedup} from quantum computing and an n=2n=2 speedup using classical computers and relativistic effects. The goal is not to propose a practical model of computation, but to probe the ultimate limits physics places on computation.Comment: 6 pages, LaTeX, feedback welcom

    The 1980 land cover for the Puget Sound region

    Get PDF
    Both LANDSAT imagery and the video information communications and retrieval software were used to develop a land cover classifiction of the Puget Sound of Washington. Planning agencies within the region were provided with a highly accurate land cover map registered to the 1980 census tracts which could subsequently be incorporated as one data layer in a multi-layer data base. Many historical activities related to previous land cover mapping studies conducted in the Puget Sound region are summarized. Valuable insight into conducting a project with a large community of users and in establishing user confidence in a multi-purpose land cover map derived from LANDSAT is provided

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Resource savings by urban mining : the case of desktop and laptop computers in Belgium

    Get PDF
    Waste electrical and electronic equipment (WEEE) has become increasingly important over the last years. Additionally, the European Union recognizes the growing importance of raw materials, and the crucial role of recycling. In this study the performance of WEEE recycling was assessed for the case of desktop and laptop computers in Belgium in 2013. The analysis was performed in four steps. First, the recycling chain is analyzed through material flow analysis (MFA) at the level of specific materials. Second, an indicator is calculated, which quantifies the effectively recycled weight ratios of the specific materials. Third, a second indicator expresses the recycling efficiency of so-called critical raw materials. Finally, the natural resource consumption of the recycling scheme in a life cycle perspective is calculated using the Cumulative Exergy Extraction from the Natural Environment (CEENE) method, and is benchmarked with a landfill scenario. Overall, the results show that base metals such as ferrous metals, aluminium and copper are recycled to a large extent, but that for precious metals improvements still can be made. The input of criticality (arising from the incoming mass, as well as the individual criticality value of the assessed material) mainly comes from base metals, resulting in a high recovery performance of raw materials criticality. Finally, the natural resource consumption of the recycling scenario is much smaller than in case of landfilling the WEEE: 80 and 87% less resource consumption is achieved for desktops and laptops respectively, hence saving significant primary raw materials

    Expanding sensor networks to automate knowledge acquisition

    Get PDF
    The availability of accurate, low-cost sensors to scientists has resulted in widespread deployment in a variety of sporting and health environments. The sensor data output is often in a raw, proprietary or unstructured format. As a result, it is often difficult to query multiple sensors for complex properties or actions. In our research, we deploy a heterogeneous sensor network to detect the various biological and physiological properties in athletes during training activities. The goal for exercise physiologists is to quickly identify key intervals in exercise such as moments of stress or fatigue. This is not currently possible because of low level sensors and a lack of query language support. Thus, our motivation is to expand the sensor network with a contextual layer that enriches raw sensor data, so that it can be exploited by a high level query language. To achieve this, the domain expert specifies events in a tradiational event-condition-action format to deliver the required contextual enrichment

    Seventh year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    There are no author-identified significant results in this report

    The Lab Director: Minister of Foreign Affairs

    Get PDF
    corecore