20 research outputs found

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing

    SememeASR: Boosting Performance of End-to-End Speech Recognition against Domain and Long-Tailed Data Shift with Sememe Semantic Knowledge

    Full text link
    Recently, excellent progress has been made in speech recognition. However, pure data-driven approaches have struggled to solve the problem in domain-mismatch and long-tailed data. Considering that knowledge-driven approaches can help data-driven approaches alleviate their flaws, we introduce sememe-based semantic knowledge information to speech recognition (SememeASR). Sememe, according to the linguistic definition, is the minimum semantic unit in a language and is able to represent the implicit semantic information behind each word very well. Our experiments show that the introduction of sememe information can improve the effectiveness of speech recognition. In addition, our further experiments show that sememe knowledge can improve the model's recognition of long-tailed data and enhance the model's domain generalization ability.Comment: Accepted by INTERSPEECH 202

    Word-level Textual Adversarial Attacking as Combinatorial Optimization

    Full text link
    Adversarial attacks are carried out to reveal the vulnerability of deep neural networks. Textual adversarial attacking is challenging because text is discrete and a small perturbation can bring significant change to the original input. Word-level attacking, which can be regarded as a combinatorial optimization problem, is a well-studied class of textual attack methods. However, existing word-level attack models are far from perfect, largely because unsuitable search space reduction methods and inefficient optimization algorithms are employed. In this paper, we propose a novel attack model, which incorporates the sememe-based word substitution method and particle swarm optimization-based search algorithm to solve the two problems separately. We conduct exhaustive experiments to evaluate our attack model by attacking BiLSTM and BERT on three benchmark datasets. Experimental results demonstrate that our model consistently achieves much higher attack success rates and crafts more high-quality adversarial examples as compared to baseline methods. Also, further experiments show our model has higher transferability and can bring more robustness enhancement to victim models by adversarial training. All the code and data of this paper can be obtained on https://github.com/thunlp/SememePSO-Attack.Comment: Accepted at ACL 2020 as a long paper (a typo is corrected as compared with the official conference camera-ready version). 16 pages, 3 figure

    Knowledge-Augmented Language Model and its Application to Unsupervised Named-Entity Recognition

    Full text link
    Traditional language models are unable to efficiently model entity names observed in text. All but the most popular named entities appear infrequently in text providing insufficient context. Recent efforts have recognized that context can be generalized between entity names that share the same type (e.g., \emph{person} or \emph{location}) and have equipped language models with access to an external knowledge base (KB). Our Knowledge-Augmented Language Model (KALM) continues this line of work by augmenting a traditional model with a KB. Unlike previous methods, however, we train with an end-to-end predictive objective optimizing the perplexity of text. We do not require any additional information such as named entity tags. In addition to improving language modeling performance, KALM learns to recognize named entities in an entirely unsupervised way by using entity type information latent in the model. On a Named Entity Recognition (NER) task, KALM achieves performance comparable with state-of-the-art supervised models. Our work demonstrates that named entities (and possibly other types of world knowledge) can be modeled successfully using predictive learning and training on large corpora of text without any additional information.Comment: NAACL 2019; updated to cite Zhou et al. (2018) EMNLP as a piece of related wor
    corecore