3,970 research outputs found

    Validating simulated interaction for retrieval evaluation

    Get PDF
    A searcher’s interaction with a retrieval system consists of actions such as query formulation, search result list interaction and document interaction. The simulation of searcher interaction has recently gained momentum in the analysis and evaluation of interactive information retrieval (IIR). However, a key issue that has not yet been adequately addressed is the validity of such IIR simulations and whether they reliably predict the performance obtained by a searcher across the session. The aim of this paper is to determine the validity of the common interaction model (CIM) typically used for simulating multi-query sessions. We focus on search result interactions, i.e., inspecting snippets, examining documents and deciding when to stop examining the results of a single query, or when to stop the whole session. To this end, we run a series of simulations grounded by real world behavioral data to show how accurate and responsive the model is to various experimental conditions under which the data were produced. We then validate on a second real world data set derived under similar experimental conditions. We seek to predict cumulated gain across the session. We find that the interaction model with a query-level stopping strategy based on consecutive non-relevant snippets leads to the highest prediction accuracy, and lowest deviation from ground truth, around 9 to 15% depending on the experimental conditions. To our knowledge, the present study is the first validation effort of the CIM that shows that the model’s acceptance and use is justified within IIR evaluations. We also identify and discuss ways to further improve the CIM and its behavioral parameters for more accurate simulations

    Portable extraction of partially structured facts from the web

    Get PDF
    A novel fact extraction task is defined to fill a gap between current information retrieval and information extraction technologies. It is shown that it is possible to extract useful partially structured facts about different kinds of entities in a broad domain, i.e. all kinds of places depicted in tourist images. Importantly the approach does not rely on existing linguistic resources (gazetteers, taggers, parsers, etc.) and it ported easily and cheaply between two very different languages (English and Latvian). Previous fact extraction from the web has focused on the extraction of structured data, e.g. (Building-LocatedIn-Town). In contrast we extract richer and more interesting facts, such as a fact explaining why a building was built. Enough structure is maintained to facilitate subsequent processing of the information. For example, this partial structure enables straightforward template-based text generation. We report positive results for the correctness and interest of English and Latvian facts and for the utility of the extracted facts in enhancing image captions

    Using the Annotated Bibliography as a Resource for Indicative Summarization

    Get PDF
    We report on a language resource consisting of 2000 annotated bibliography entries, which is being analyzed as part of our research on indicative document summarization. We show how annotated bibliographies cover certain aspects of summarization that have not been well-covered by other summary corpora, and motivate why they constitute an important form to study for information retrieval. We detail our methodology for collecting the corpus, and overview our document feature markup that we introduced to facilitate summary analysis. We present the characteristics of the corpus, methods of collection, and show its use in finding the distribution of types of information included in indicative summaries and their relative ordering within the summaries.Comment: 8 pages, 3 figure

    Utilizing sub-topical structure of documents for information retrieval.

    Get PDF
    Text segmentation in natural language processing typically refers to the process of decomposing a document into constituent subtopics. Our work centers on the application of text segmentation techniques within information retrieval (IR) tasks. For example, for scoring a document by combining the retrieval scores of its constituent segments, exploiting the proximity of query terms in documents for ad-hoc search, and for question answering (QA), where retrieved passages from multiple documents are aggregated and presented as a single document to a searcher. Feedback in ad hoc IR task is shown to benefit from the use of extracted sentences instead of terms from the pseudo relevant documents for query expansion. Retrieval effectiveness for patent prior art search task is enhanced by applying text segmentation to the patent queries. Another aspect of our work involves augmenting text segmentation techniques to produce segments which are more readable with less unresolved anaphora. This is particularly useful for QA and snippet generation tasks where the objective is to aggregate relevant and novel information from multiple documents satisfying user information need on one hand, and ensuring that the automatically generated content presented to the user is easily readable without reference to the original source document

    Multilingual Word Sense Induction to Improve Web Search Result Clustering

    Get PDF
    In [12] a novel approach to Web search result clustering based on Word Sense Induction, i.e. the automatic discovery of word senses from raw text was presented; key to the proposed approach is the idea of, first, automatically in- ducing senses for the target query and, second, clustering the search results based on their semantic similarity to the word senses induced. In [1] we proposed an innovative Word Sense Induction method based on multilingual data; key to our approach was the idea that a multilingual context representation, where the context of the words is expanded by considering its translations in different languages, may im- prove the WSI results; the experiments showed a clear per- formance gain. In this paper we give some preliminary ideas to exploit our multilingual Word Sense Induction method to Web search result clustering

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201
    corecore