6 research outputs found
Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data
Sentinel-1A synthetic aperture radar (SAR) data present an opportunity for acquiring crop information without restrictions caused by weather and illumination conditions, at a spatial resolution appropriate for individual rice fields and a temporal resolution sufficient to capture the growth profiles of different crop species. This study investigated the use of multi-temporal Sentinel-1A SAR data and Landsat-derived normalized difference vegetation index (NDVI) data to map the spatial distribution of paddy rice fields across parts of the Sanjiang plain, in northeast China. The satellite sensor data were acquired throughout the rice crop-growing season (May–October). A co-registered set of 10 dual polarization (VH/VV) SAR and NDVI images depicting crop phenological development were used as inputs to Support Vector Machine (SVM) and Random Forest (RF) machine learning classification algorithms in order to map paddy rice fields. The results showed a significant increase in overall classification when the NDVI time-series data were integrated with the various combinations of multi-temporal polarization channels (i.e. VH, VV, and VH/VV). The highest classification accuracies overall (95.2%) and for paddy rice (96.7%) were generated using the RF algorithm applied to combined multi-temporal VH polarization and NDVI data. The SVM classifier was most effective when applied to the dual polarization (i.e. VH and VV) SAR data alone and this generated overall and paddy rice classification accuracies of 91.6% and 82.5%, respectively. The results demonstrate the practicality of implementing RF or SVM machine learning algorithms to produce 10 m spatial resolution maps of paddy rice fields with limited ground data using a combination of multi-temporal SAR and NDVI data, where available, or SAR data alone. The methodological framework developed in this study is apposite for large-scale implementation across China and other major rice-growing regions of the world
USING MULTI-TEMPORAL REMOTE SENSING DATA TO ANALYZE THE SPATIO-TEMPORAL PATTERNS OF DRY SEASON RICE PRODUCTION IN BANGLADESH
Mapping of multitemporal rice (Oryza sativa L.) growth stages using remote sensing with multi-sensor and machine learning : a thesis dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Manawatū, New Zealand
Figure 2.1 is adapted and re-used under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.Rice (Oryza Sativa) plays a pivotal role in food security for Asian countries, especially in Indonesia. Due to the increasing pressure of environmental changes, such as land use and climate, rice cultivation areas need to be monitored regularly and spatially to ensure sustainable rice production. Moreover, timely information of rice growth stages (RGS) can lead to more efficient of inputs distribution from water, seed, fertilizer, and pesticide. One of the efficient solutions for regularly mapping the rice crop is using Earth observation satellites. Moreover, the increasing availability of open access satellite images such as Landsat-8, Sentinel-1, and Sentinel-2 provides ample opportunities to map continuous and high-resolution rice growth stages with greater accuracy. The majority of the literature has focused on mapping rice area, cropping patterns and relied mainly on the phenology of vegetation. However, the mapping process of RGS was difficult to assess the accuracy, time-consuming, and depended on only one sensor.
In this work, we discuss the use of machine learning algorithms (MLA) for mapping paddy RGS with multiple remote sensing data in near-real-time. The study area was Java Island, which is the primary rice producer in Indonesia. This study has investigated: (1) the mapping of RGS using Landsat-8 imagery and different MLAs, and their rigorous performance was evaluated by conducting a multitemporal analysis; (2) the temporal consistency of predicting RGS using Sentinel-2, MOD13Q1, and Sentinel-1 data; (3) evaluating the correlation of local statistics data and paddy RGS using Sentinel-2, PROBA-V, and Sentinel-1 with MLAs.
The ground truth datasets were collected from multi-year web camera data (2014-2016) and three months of the field campaign in different regions of Java (2018). The study considered the RGS in the analysis to be vegetative, reproductive, ripening, bare land, and flooding, and MLAs such as support vector machines (SVMs), random forest (RF), and artificial neural network (ANN) were used. The temporal consistency matrix was used to compare the classification maps within three sensor datasets (Landsat-8 OLI, Sentinel-2, and Sentinel-2, MOD13Q1, Sentinel-1) and in four periods (5, 10, 15, 16 days). Moreover, the result of the RGS map was also compared with monthly data from local statistics within each sub-district using cross-correlation analysis.
The result from the analysis shows that SVM with a radial base function outperformed the RF and ANN and proved to be a robust method for small-size datasets (< 1,000 points). Compared to Sentinel-2, Landsat-8 OLI gives less accuracy due to the lack of a red-edge band and larger pixel size (30 x 30 m). Integration of Sentinel-2, MOD13Q1, and Sentinel-1 improved the classification performance and increased the temporal availability of cloud-free maps. The integration of PROBA-V and Sentinel-1 improved the classification accuracy from the Landsat-8 result, consistent with the monthly rice planting area statistics at the sub-district level. The western area of Java has the highest accuracy and consistency since the cropping pattern only relied on rice cultivation.
In contrast, less accuracy was noticed in the eastern area because of upland rice cultivation due to limited irrigation facilities and mixed cropping. In addition, the cultivation of shallots to the north of Nganjuk Regency interferes with the model predictions because the cultivation of shallots resembles the vegetative phase due to the water banks. One future research idea is the auto-detection of the cropping index in the complex landscape to be able to use it for mapping RGS on a global scale.
Detection of the rice area and RGS using Google Earth Engine (GEE) can be an action plan to disseminate the information quickly on a planetary scale. Our results show that the multitemporal Sentinel-1 combined with RF can detect rice areas with high accuracy (>91%). Similarly, accurate RGS maps can be detected by integrating multiple remote sensing (Sentinel-2, Landsat-8 OLI, and MOD13Q1) data with acceptable accuracy (76.4%), with high temporal frequency and lower cloud interference (every 16 days).
Overall, this study shows that remote sensing combined with the machine learning methodology can deliver information on RGS in a timely fashion, which is easy to scale up and consistent both in time and space and matches the local statistics. This thesis is also in line with the existing rice monitoring projects such as Crop Monitor, Crop Watch, AMIS, and Sen4Agri to support disseminating information over a large area. To sum up, the proposed workflow and detailed map provide a more accurate method and information in near real-time for stakeholders, such as governmental agencies against the existing mapping method. This method can be introduced to provide accurate information to rice farmers promptly with sufficient inputs such as irrigation, seeds, and fertilisers for ensuring national food security from the shifting planting time due to climate change
SATELLITE-BASED CHARACTERIZATION OF CROP TYPE AND PRODUCTIVITY OF AGROECOSYSTEMS: CASE STUDIES IN NORTHEAST CHINA, SOUTHERN AFRICA, AND CONTERMINOUS USA
Agroecosystem, or agricultural ecosystems, is the important anthropogenic ecosystem to meet the human demand for food, fiber, and feed, and it covers approximately 40-50% of the earth’s land surface. Accurate estimates of agricultural land use and land cover and Gross Primary Production (GPP) are indispensable for global food security and understanding variations in the terrestrial carbon budgets. This dissertation aimed to strengthen the capacities of remote sensing to produce the high-quality products of crop type maps and primary productivity on large regional scales.
In chapter 2, we designed simple algorithms to identify paddy rice of two different phenological phases (flooding/transplanting and ripening) at regional scales using 30-m multi-temporal Landsat images. Sixteen Landsat images from 2010 - 2012 were used to generate the paddy rice map in the Sanjiang Plain, northeast China - one of the intensive paddy rice cultivation regions in Northern Asia. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively, and was an improvement over the paddy rice dataset derived through visual interpretation and digitalization on the fine-resolution satellite images and traditional agricultural census data.
Chapter 3 evaluated the capacities of the temporal MODIS vegetation indices and the satellite-based Vegetation Photosynthesis Model (VPM) to describe phenology and model the seasonal dynamics of GPP for savanna woodlands in Southern Africa on the site level. The results showed that the VPM-based GPP estimates tracked the seasonal dynamics and interannual variation of GPP estimated from eddy covariance measurements at flux tower sites. This study suggests that the VPM is a valuable tool for estimating GPP of semi-arid and semi-humid savanna woodland ecosystems in Southern Africa.
Chapter 4 assessed the accuracies of air temperature and downward shortwave radiation of the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP), and evaluated impacts of the accuracies of regional climate inputs on the VPM-based GPP estimates for U.S. Midwest cropland. The results implied that the bias of NARR downward shortwave radiation introduced significant uncertainties into the VPM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.
Chapter 5 presented independent and complementary analyses of the impact of 2012 flash drought on productivity in the U.S. Midwest using multiple sources of evidences, i.e., in-situ AmeriFlux CO2 data, satellite observations of vegetation indices and solar-induced chlorophyll fluorescence (SIF), and scaled ecosystem modeling. The results showed that phenological activities of all biomes advanced 1-2 weeks earlier in 2012 compared to other years of 2010-2014, and the drought threatened the U.S. Midwest agroecosystems. The growth of grassland/prairie and cropland was suppressed from June and it didn’t recover until the end of the growing season. As the frequency and severity of droughts have been predicted to increase in future, this study provides better insights into the impacts of flash droughts on vegetation productivity and carbon cycling of major biomes in the U.S. Midwest
Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms
Agricultural land use change substantially affects climate,water, ecosystems, biodiversity, and humanwelfare. In
recent decades, due to increasing population and food demand and the backdrop of global warming, croplands
have been expanding into higher latitude regions. One such hotspot is paddy rice expansion in northeast
China. However, there are no maps available for documenting the spatial and temporal patterns of continuous
paddy rice expansion. In this study, we developed an automated, Landsat-based paddy rice mapping (Landsat-
RICE) systemthat uses time series Landsat images and a phenology-based algorithmbased on the unique spectral
characteristics of paddy rice during the flooding/transplanting phase. As a pilot study, we analyzed all the
available Landsat images from 1986 to 2010 (498 scenes) in one tile (path/row 113/27) of northeast China,
which tracked paddy rice expansion in epochs with five-year increments (1986–1990, 1991–1995, 1996–2000,
2001–2005, and 2006–2010). Several maps of land cover types (barren land and built-up land; evergreen,
deciduous and sparse vegetation types; and water-related land cover types such as permanent water body,
mixed pixels of water and vegetation, spring flooded wetlands and summer flooded land) were generated as
masks. Air temperature was used to define phenology timing and crop calendar, which were then used to select
Landsat images in the phenology-based algorithms for paddy rice and masks. The resultant maps of paddy rice in
the five epochs were evaluated using validation samples from multiple sources, and the overall accuracies and
Kappa coefficients ranged from84 to 95% and 0.6–0.9, respectively. The paddy rice area in the study area substantially
increased from 1986 to 2010, particularly after the 1990s. This study demonstrates the potential of the
Landsat-RICE systemand time series Landsat images for tracking agricultural land use changes at 30-mresolution
in the temperate zone with single crop cultivatio
