1,937 research outputs found

    Distribution on Warp Maps for Alignment of Open and Closed Curves

    Get PDF
    Alignment of curve data is an integral part of their statistical analysis, and can be achieved using model- or optimization-based approaches. The parameter space is usually the set of monotone, continuous warp maps of a domain. Infinite-dimensional nature of the parameter space encourages sampling based approaches, which require a distribution on the set of warp maps. Moreover, the distribution should also enable sampling in the presence of important landmark information on the curves which constrain the warp maps. For alignment of closed and open curves in Rd,d=1,2,3\mathbb{R}^d, d=1,2,3, possibly with landmark information, we provide a constructive, point-process based definition of a distribution on the set of warp maps of [0,1][0,1] and the unit circle S1\mathbb{S}^1 that is (1) simple to sample from, and (2) possesses the desiderata for decomposition of the alignment problem with landmark constraints into multiple unconstrained ones. For warp maps on [0,1][0,1], the distribution is related to the Dirichlet process. We demonstrate its utility by using it as a prior distribution on warp maps in a Bayesian model for alignment of two univariate curves, and as a proposal distribution in a stochastic algorithm that optimizes a suitable alignment functional for higher-dimensional curves. Several examples from simulated and real datasets are provided

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    • …
    corecore