7,586 research outputs found

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness

    A Spectral Learning Approach to Range-Only SLAM

    Full text link
    We present a novel spectral learning algorithm for simultaneous localization and mapping (SLAM) from range data with known correspondences. This algorithm is an instance of a general spectral system identification framework, from which it inherits several desirable properties, including statistical consistency and no local optima. Compared with popular batch optimization or multiple-hypothesis tracking (MHT) methods for range-only SLAM, our spectral approach offers guaranteed low computational requirements and good tracking performance. Compared with popular extended Kalman filter (EKF) or extended information filter (EIF) approaches, and many MHT ones, our approach does not need to linearize a transition or measurement model; such linearizations can cause severe errors in EKFs and EIFs, and to a lesser extent MHT, particularly for the highly non-Gaussian posteriors encountered in range-only SLAM. We provide a theoretical analysis of our method, including finite-sample error bounds. Finally, we demonstrate on a real-world robotic SLAM problem that our algorithm is not only theoretically justified, but works well in practice: in a comparison of multiple methods, the lowest errors come from a combination of our algorithm with batch optimization, but our method alone produces nearly as good a result at far lower computational cost

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version
    corecore