7,586 research outputs found
Keyframe-based monocular SLAM: design, survey, and future directions
Extensive research in the field of monocular SLAM for the past fifteen years
has yielded workable systems that found their way into various applications in
robotics and augmented reality. Although filter-based monocular SLAM systems
were common at some time, the more efficient keyframe-based solutions are
becoming the de facto methodology for building a monocular SLAM system. The
objective of this paper is threefold: first, the paper serves as a guideline
for people seeking to design their own monocular SLAM according to specific
environmental constraints. Second, it presents a survey that covers the various
keyframe-based monocular SLAM systems in the literature, detailing the
components of their implementation, and critically assessing the specific
strategies made in each proposed solution. Third, the paper provides insight
into the direction of future research in this field, to address the major
limitations still facing monocular SLAM; namely, in the issues of illumination
changes, initialization, highly dynamic motion, poorly textured scenes,
repetitive textures, map maintenance, and failure recovery
An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor
This paper presents a novel tightly-coupled keyframe-based Simultaneous
Localization and Mapping (SLAM) system with loop-closing and relocalization
capabilities targeted for the underwater domain. Our previous work, SVIn,
augmented the state-of-the-art visual-inertial state estimation package OKVIS
to accommodate acoustic data from sonar in a non-linear optimization-based
framework. This paper addresses drift and loss of localization -- one of the
main problems affecting other packages in underwater domain -- by providing the
following main contributions: a robust initialization method to refine scale
using depth measurements, a fast preprocessing step to enhance the image
quality, and a real-time loop-closing and relocalization method using bag of
words (BoW). An additional contribution is the addition of depth measurements
from a pressure sensor to the tightly-coupled optimization formulation.
Experimental results on datasets collected with a custom-made underwater sensor
suite and an autonomous underwater vehicle from challenging underwater
environments with poor visibility demonstrate performance never achieved before
in terms of accuracy and robustness
A Spectral Learning Approach to Range-Only SLAM
We present a novel spectral learning algorithm for simultaneous localization
and mapping (SLAM) from range data with known correspondences. This algorithm
is an instance of a general spectral system identification framework, from
which it inherits several desirable properties, including statistical
consistency and no local optima. Compared with popular batch optimization or
multiple-hypothesis tracking (MHT) methods for range-only SLAM, our spectral
approach offers guaranteed low computational requirements and good tracking
performance. Compared with popular extended Kalman filter (EKF) or extended
information filter (EIF) approaches, and many MHT ones, our approach does not
need to linearize a transition or measurement model; such linearizations can
cause severe errors in EKFs and EIFs, and to a lesser extent MHT, particularly
for the highly non-Gaussian posteriors encountered in range-only SLAM. We
provide a theoretical analysis of our method, including finite-sample error
bounds. Finally, we demonstrate on a real-world robotic SLAM problem that our
algorithm is not only theoretically justified, but works well in practice: in a
comparison of multiple methods, the lowest errors come from a combination of
our algorithm with batch optimization, but our method alone produces nearly as
good a result at far lower computational cost
Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments
This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version
- …
