1,847 research outputs found

    Observers for invariant systems on Lie groups with biased input measurements and homogeneous outputs

    Full text link
    This paper provides a new observer design methodology for invariant systems whose state evolves on a Lie group with outputs in a collection of related homogeneous spaces and where the measurement of system input is corrupted by an unknown constant bias. The key contribution of the paper is to study the combined state and input bias estimation problem in the general setting of Lie groups, a question for which only case studies of specific Lie groups are currently available. We show that any candidate observer (with the same state space dimension as the observed system) results in non-autonomous error dynamics, except in the trivial case where the Lie-group is Abelian. This precludes the application of the standard non-linear observer design methodologies available in the literature and leads us to propose a new design methodology based on employing invariant cost functions and general gain mappings. We provide a rigorous and general stability analysis for the case where the underlying Lie group allows a faithful matrix representation. We demonstrate our theory in the example of rigid body pose estimation and show that the proposed approach unifies two competing pose observers published in prior literature.Comment: 11 page

    Gradient-like observer design on the Special Euclidean group SE(3) with system outputs on the real projective space

    Full text link
    A nonlinear observer on the Special Euclidean group SE(3)\mathrm{SE(3)} for full pose estimation, that takes the system outputs on the real projective space directly as inputs, is proposed. The observer derivation is based on a recent advanced theory on nonlinear observer design. A key advantage with respect to existing pose observers on SE(3)\mathrm{SE(3)} is that we can now incorporate in a unique observer different types of measurements such as vectorial measurements of known inertial vectors and position measurements of known feature points. The proposed observer is extended allowing for the compensation of unknown constant bias present in the velocity measurements. Rigorous stability analyses are equally provided. Excellent performance of the proposed observers are shown by means of simulations

    An Equivariant Observer Design for Visual Localisation and Mapping

    Full text link
    This paper builds on recent work on Simultaneous Localisation and Mapping (SLAM) in the non-linear observer community, by framing the visual localisation and mapping problem as a continuous-time equivariant observer design problem on the symmetry group of a kinematic system. The state-space is a quotient of the robot pose expressed on SE(3) and multiple copies of real projective space, used to represent both points in space and bearings in a single unified framework. An observer with decoupled Riccati-gains for each landmark is derived and we show that its error system is almost globally asymptotically stable and exponentially stable in-the-large.Comment: 12 pages, 2 figures, published in 2019 IEEE CD
    • …
    corecore