47 research outputs found

    Fast intra prediction in the transform domain

    Get PDF
    In this paper, we present a fast intra prediction method based on separating the transformed coefficients. The prediction block can be obtained from the transformed and quantized neighboring block generating minimum distortion for each DC and AC coefficients independently. Two prediction methods are proposed, one is full block search prediction (FBSP) and the other is edge based distance prediction (EBDP), that find the best matched transformed coefficients on additional neighboring blocks. Experimental results show that the use of transform coefficients greatly enhances the efficiency of intra prediction whilst keeping complexity low compared to H.264/AVC

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    Computation-aware intra-mode decision for H.264 coding and transcoding

    Get PDF
    [[abstract]]been equipped with modern video codecs. Video communications, especially for encoding H.264 format bit-stream, however, are usually very power-consuming, leading to rather limited communication period for mobile devices powered by batteries. Computation-aware video coding can effectively extend the battery life. In this paper, we propose a computation-aware intra mode decision for H.264 coding and transcoding applications. The proposed algorithm optimizes the visual quality by adaptively adjusting the number of prediction modes in mode decision under a given computation constraint. We introduce a new concept of computation buffer and formulate the computation control of mode decision as a rate-distortion optimization problem of computation buffer control. Experimental results show that our proposed algorithm can effectively control the computational complexity while maintaining good RD-performance and satisfying the given computation constraint.[[fileno]]2030144030046[[department]]電機工程學

    Review of standard traditional distortion metrics and a need for perceptual distortion metric at a (sub) macroblock level

    Get PDF
    Within a video encoder the distortion metric performs an Image Quality Assessment (IQA). However, to exploit perceptual redundancy to lower the convex hull of the Rate- Distortion (R-D) curve, a Perceptual Distortion Metric (PDM) modelling of the Human Visual System (HVS) should be used. Since block-based video encoders like H.264/AVC operate at the Sub-Macroblock (Sub-MB) level, there exists a need to produce a locally operating PDM. A locally operating PDM must meet the requirements of Standard Traditional Distortion Metrics (STDMs), in that it must satisfy the Triangle Equality Rule. Hence, this paper presents a review of STDMs of SSE, SAD and SATD against the perceptual IQA of Structural Similarity (SSIM) at the Sub-MB level. Furthermore, this paper illustrates the Universal Bounded Region (UBR) by block size that supports the triangle equality rule within the Sub-MB level, between SSIM and STDMs like SATD at the prediction stage

    Low complexity in-loop perceptual video coding

    Get PDF
    The tradition of broadcast video is today complemented with user generated content, as portable devices support video coding. Similarly, computing is becoming ubiquitous, where Internet of Things (IoT) incorporate heterogeneous networks to communicate with personal and/or infrastructure devices. Irrespective, the emphasises is on bandwidth and processor efficiencies, meaning increasing the signalling options in video encoding. Consequently, assessment for pixel differences applies uniform cost to be processor efficient, in contrast the Human Visual System (HVS) has non-uniform sensitivity based upon lighting, edges and textures. Existing perceptual assessments, are natively incompatible and processor demanding, making perceptual video coding (PVC) unsuitable for these environments. This research allows existing perceptual assessment at the native level using low complexity techniques, before producing new pixel-base image quality assessments (IQAs). To manage these IQAs a framework was developed and implemented in the high efficiency video coding (HEVC) encoder. This resulted in bit-redistribution, where greater bits and smaller partitioning were allocated to perceptually significant regions. Using a HEVC optimised processor the timing increase was < +4% and < +6% for video streaming and recording applications respectively, 1/3 of an existing low complexity PVC solution. Future work should be directed towards perceptual quantisation which offers the potential for perceptual coding gain

    Register-transfer level design of sum of absolute transformed difference for high efficiency video coding

    Get PDF
    High Efficiency Video Coding (HEVC) is the state-of-the-art video coding standard which offers 50% improvement in coding efficiency over its predecessor Advanced Video Coding (AVC). Compared to AVC, HEVC supports up to 33 angular modes, DC mode and planar mode. The significant rise in the number of intra prediction mode however has increased the computational complexity. Sum of Absolute Transformed Difference (SATD), a fast Rate Distortion Optimization (RDO) intra prediction algorithm in the HEVC standard, is one of the most complex and compute-intensive part of the encoding process. SATD alone can takes up to 40% of the total encoding time; hence off-loading it to dedicated hardware accelerators is necessary to address the increasing need for real-time video coding in accordance with the push for coding efficiency. This work proposes a Verilog-described N × N SATD hardware architecture which is based on Hadamard Transform. The architecture would support a variable block size from 4 × 4 to 32 × 32 with 1-D horizontal and 1-D vertical Hadamard Transform. At the same time, it is designed to achieve throughput optimization by pipelining and feedthrough control. The performance of the implemented SATD is then evaluated in terms of utilization, timing and power

    Two-Pass Rate Control for Improved Quality of Experience in UHDTV Delivery

    Get PDF

    Mode decision for the H.264/AVC video coding standard

    Get PDF
    H.264/AVC video coding standard gives us a very promising future for the field of video broadcasting and communication because of its high coding efficiency compared with other older video coding standards. However, high coding efficiency also carries high computational complexity. Fast motion estimation and fast mode decision are two very useful techniques which can significantly reduce computational complexity. This thesis focuses on the field of fast mode decision. The goal of this thesis is that for very similar RD performance compared with H.264/AVC video coding standard, we aim to find new fast mode decision techniques which can afford significant time savings. [Continues.
    corecore