277 research outputs found

    Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring

    Full text link
    Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such distance is of interest in multishot network coding or in singleshot multi-network coding. To prove our result, we introduce new metrics defined by skew polynomials, which we call skew metrics, we prove that skew Reed-Solomon codes have maximum skew distance, and then we translate this scenario to linearized Reed-Solomon codes and the sum-rank metric. The theories of Reed-Solomon codes and Gabidulin codes are particular cases of our theory, and the sum-rank metric extends both the Hamming and rank metrics. We develop our theory over any division ring (commutative or non-commutative field). We also consider non-zero derivations, which give new maximum rank distance codes over infinite fields not considered before

    Maximum Sum-Rank Distance Codes over Finite Chain Rings

    Full text link
    In this work, maximum sum-rank distance (MSRD) codes and linearized Reed-Solomon codes are extended to finite chain rings. It is proven that linearized Reed-Solomon codes are MSRD over finite chain rings, extending the known result for finite fields. For the proof, several results on the roots of skew polynomials are extended to finite chain rings. These include the existence and uniqueness of minimum-degree annihilator skew polynomials and Lagrange interpolator skew polynomials. A general cubic-complexity sum-rank Welch-Berlekamp decoder and a quadratic-complexity sum-rank syndrome decoder (under some assumptions) are then provided over finite chain rings. The latter also constitutes the first known syndrome decoder for linearized Reed--Solomon codes over finite fields. Finally, applications in Space-Time Coding with multiple fading blocks and physical-layer multishot Network Coding are discussed

    Fast Decoding of Interleaved Linearized Reed-Solomon Codes and Variants

    Full text link
    We construct s-interleaved linearized Reed-Solomon (ILRS) codes and variants and propose efficient decoding schemes that can correct errors beyond the unique decoding radius in the sum-rank, sum-subspace and skew metric. The proposed interpolation-based scheme for ILRS codes can be used as a list decoder or as a probabilistic unique decoder that corrects errors of sum-rank up to t≤ss+1(n−k)t\leq\frac{s}{s+1}(n-k), where s is the interleaving order, n the length and k the dimension of the code. Upper bounds on the list size and the decoding failure probability are given where the latter is based on a novel Loidreau-Overbeck-like decoder for ILRS codes. The results are extended to decoding of lifted interleaved linearized Reed-Solomon (LILRS) codes in the sum-subspace metric and interleaved skew Reed-Solomon (ISRS) codes in the skew metric. We generalize fast minimal approximant basis interpolation techniques to obtain efficient decoding schemes for ILRS codes (and variants) with subquadratic complexity in the code length. Up to our knowledge, the presented decoding schemes are the first being able to correct errors beyond the unique decoding region in the sum-rank, sum-subspace and skew metric. The results for the proposed decoding schemes are validated via Monte Carlo simulations.Comment: submitted to IEEE Transactions on Information Theory, 57 pages, 10 figure

    Sub-quadratic Decoding of One-point Hermitian Codes

    Get PDF
    We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realisation of the Guruswami-Sudan algorithm by using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimisation. The second is a Power decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the same methods from computer algebra, yielding similar asymptotic complexities.Comment: New version includes simulation results, improves some complexity results, as well as a number of reviewer corrections. 20 page

    Counting generalized Reed-Solomon codes

    Get PDF
    In this article we count the number of generalized Reed-Solomon (GRS) codes of dimension k and length n, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of 3-dimensional MDS codes of length n=6,7,8,9
    • …
    corecore