751 research outputs found

    Learning Hierarchical Features from Generative Models

    Full text link
    Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning tasks. Generative models, on the other hand, have benefited less from hierarchical models with multiple layers of latent variables. In this paper, we prove that hierarchical latent variable models do not take advantage of the hierarchical structure when trained with existing variational methods, and provide some limitations on the kind of features existing models can learn. Finally we propose an alternative architecture that do not suffer from these limitations. Our model is able to learn highly interpretable and disentangled hierarchical features on several natural image datasets with no task specific regularization or prior knowledge.Comment: ICML'201

    Deconstructing the Ladder Network Architecture

    Full text link
    The Manual labeling of data is and will remain a costly endeavor. For this reason, semi-supervised learning remains a topic of practical importance. The recently proposed Ladder Network is one such approach that has proven to be very successful. In addition to the supervised objective, the Ladder Network also adds an unsupervised objective corresponding to the reconstruction costs of a stack of denoising autoencoders. Although the empirical results are impressive, the Ladder Network has many components intertwined, whose contributions are not obvious in such a complex architecture. In order to help elucidate and disentangle the different ingredients in the Ladder Network recipe, this paper presents an extensive experimental investigation of variants of the Ladder Network in which we replace or remove individual components to gain more insight into their relative importance. We find that all of the components are necessary for achieving optimal performance, but they do not contribute equally. For semi-supervised tasks, we conclude that the most important contribution is made by the lateral connection, followed by the application of noise, and finally the choice of what we refer to as the `combinator function' in the decoder path. We also find that as the number of labeled training examples increases, the lateral connections and reconstruction criterion become less important, with most of the improvement in generalization being due to the injection of noise in each layer. Furthermore, we present a new type of combinator function that outperforms the original design in both fully- and semi-supervised tasks, reducing record test error rates on Permutation-Invariant MNIST to 0.57% for the supervised setting, and to 0.97% and 1.0% for semi-supervised settings with 1000 and 100 labeled examples respectively.Comment: Proceedings of the 33 rd International Conference on Machine Learning, New York, NY, USA, 201

    Adversarial Autoencoders

    Full text link
    In this paper, we propose the "adversarial autoencoder" (AAE), which is a probabilistic autoencoder that uses the recently proposed generative adversarial networks (GAN) to perform variational inference by matching the aggregated posterior of the hidden code vector of the autoencoder with an arbitrary prior distribution. Matching the aggregated posterior to the prior ensures that generating from any part of prior space results in meaningful samples. As a result, the decoder of the adversarial autoencoder learns a deep generative model that maps the imposed prior to the data distribution. We show how the adversarial autoencoder can be used in applications such as semi-supervised classification, disentangling style and content of images, unsupervised clustering, dimensionality reduction and data visualization. We performed experiments on MNIST, Street View House Numbers and Toronto Face datasets and show that adversarial autoencoders achieve competitive results in generative modeling and semi-supervised classification tasks

    Semi-Supervised Learning with Ladder Networks

    Full text link
    We combine supervised learning with unsupervised learning in deep neural networks. The proposed model is trained to simultaneously minimize the sum of supervised and unsupervised cost functions by backpropagation, avoiding the need for layer-wise pre-training. Our work builds on the Ladder network proposed by Valpola (2015), which we extend by combining the model with supervision. We show that the resulting model reaches state-of-the-art performance in semi-supervised MNIST and CIFAR-10 classification, in addition to permutation-invariant MNIST classification with all labels.Comment: Revised denoising function, updated results, fixed typo

    Semi-Amortized Variational Autoencoders

    Full text link
    Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.Comment: ICML 201

    Recent Advances in Autoencoder-Based Representation Learning

    Full text link
    Learning useful representations with little or no supervision is a key challenge in artificial intelligence. We provide an in-depth review of recent advances in representation learning with a focus on autoencoder-based models. To organize these results we make use of meta-priors believed useful for downstream tasks, such as disentanglement and hierarchical organization of features. In particular, we uncover three main mechanisms to enforce such properties, namely (i) regularizing the (approximate or aggregate) posterior distribution, (ii) factorizing the encoding and decoding distribution, or (iii) introducing a structured prior distribution. While there are some promising results, implicit or explicit supervision remains a key enabler and all current methods use strong inductive biases and modeling assumptions. Finally, we provide an analysis of autoencoder-based representation learning through the lens of rate-distortion theory and identify a clear tradeoff between the amount of prior knowledge available about the downstream tasks, and how useful the representation is for this task.Comment: Presented at the third workshop on Bayesian Deep Learning (NeurIPS 2018

    PixelGAN Autoencoders

    Full text link
    In this paper, we describe the "PixelGAN autoencoder", a generative autoencoder in which the generative path is a convolutional autoregressive neural network on pixels (PixelCNN) that is conditioned on a latent code, and the recognition path uses a generative adversarial network (GAN) to impose a prior distribution on the latent code. We show that different priors result in different decompositions of information between the latent code and the autoregressive decoder. For example, by imposing a Gaussian distribution as the prior, we can achieve a global vs. local decomposition, or by imposing a categorical distribution as the prior, we can disentangle the style and content information of images in an unsupervised fashion. We further show how the PixelGAN autoencoder with a categorical prior can be directly used in semi-supervised settings and achieve competitive semi-supervised classification results on the MNIST, SVHN and NORB datasets

    Learning to Generate with Memory

    Full text link
    Memory units have been widely used to enrich the capabilities of deep networks on capturing long-term dependencies in reasoning and prediction tasks, but little investigation exists on deep generative models (DGMs) which are good at inferring high-level invariant representations from unlabeled data. This paper presents a deep generative model with a possibly large external memory and an attention mechanism to capture the local detail information that is often lost in the bottom-up abstraction process in representation learning. By adopting a smooth attention model, the whole network is trained end-to-end by optimizing a variational bound of data likelihood via auto-encoding variational Bayesian methods, where an asymmetric recognition network is learnt jointly to infer high-level invariant representations. The asymmetric architecture can reduce the competition between bottom-up invariant feature extraction and top-down generation of instance details. Our experiments on several datasets demonstrate that memory can significantly boost the performance of DGMs and even achieve state-of-the-art results on various tasks, including density estimation, image generation, and missing value imputation

    MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders

    Full text link
    Variational Autoencoder (VAE), a simple and effective deep generative model, has led to a number of impressive empirical successes and spawned many advanced variants and theoretical investigations. However, recent studies demonstrate that, when equipped with expressive generative distributions (aka. decoders), VAE suffers from learning uninformative latent representations with the observation called KL Varnishing, in which case VAE collapses into an unconditional generative model. In this work, we introduce mutual posterior-divergence regularization, a novel regularization that is able to control the geometry of the latent space to accomplish meaningful representation learning, while achieving comparable or superior capability of density estimation. Experiments on three image benchmark datasets demonstrate that, when equipped with powerful decoders, our model performs well both on density estimation and representation learning.Comment: Published at ICLR-2019. 12 pages contents + 4 pages appendix, 5 figure

    Item Recommendation with Variational Autoencoders and Heterogenous Priors

    Full text link
    In recent years, Variational Autoencoders (VAEs) have been shown to be highly effective in both standard collaborative filtering applications and extensions such as incorporation of implicit feedback. We extend VAEs to collaborative filtering with side information, for instance when ratings are combined with explicit text feedback from the user. Instead of using a user-agnostic standard Gaussian prior, we incorporate user-dependent priors in the latent VAE space to encode users' preferences as functions of the review text. Taking into account both the rating and the text information to represent users in this multimodal latent space is promising to improve recommendation quality. Our proposed model is shown to outperform the existing VAE models for collaborative filtering (up to 29.41% relative improvement in ranking metric) along with other baselines that incorporate both user ratings and text for item recommendation.Comment: Accepted for the 3rd Workshop on Deep Learning for Recommender Systems (DLRS 2018), held in conjunction with the 12th ACM Conference on Recommender Systems (RecSys 2018) in Vancouver, Canad
    corecore