202,244 research outputs found
Parsimonious Labeling
We propose a new family of discrete energy minimization problems, which we
call parsimonious labeling. Specifically, our energy functional consists of
unary potentials and high-order clique potentials. While the unary potentials
are arbitrary, the clique potentials are proportional to the {\em diversity} of
set of the unique labels assigned to the clique. Intuitively, our energy
functional encourages the labeling to be parsimonious, that is, use as few
labels as possible. This in turn allows us to capture useful cues for important
computer vision applications such as stereo correspondence and image denoising.
Furthermore, we propose an efficient graph-cuts based algorithm for the
parsimonious labeling problem that provides strong theoretical guarantees on
the quality of the solution. Our algorithm consists of three steps. First, we
approximate a given diversity using a mixture of a novel hierarchical
Potts model. Second, we use a divide-and-conquer approach for each mixture
component, where each subproblem is solved using an effficient
-expansion algorithm. This provides us with a small number of putative
labelings, one for each mixture component. Third, we choose the best putative
labeling in terms of the energy value. Using both sythetic and standard real
datasets, we show that our algorithm significantly outperforms other graph-cuts
based approaches
Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction
Motivated by applications to sensor networks, as well as to many other areas,
this paper studies the construction of minimum-degree spanning trees. We
consider the classical node-register state model, with a weakly fair scheduler,
and we present a space-optimal \emph{silent} self-stabilizing construction of
minimum-degree spanning trees in this model. Computing a spanning tree with
minimum degree is NP-hard. Therefore, we actually focus on constructing a
spanning tree whose degree is within one from the optimal. Our algorithm uses
registers on bits, converges in a polynomial number of rounds, and
performs polynomial-time computation at each node. Specifically, the algorithm
constructs and stabilizes on a special class of spanning trees, with degree at
most . Indeed, we prove that, unless NP coNP, there are no
proof-labeling schemes involving polynomial-time computation at each node for
the whole family of spanning trees with degree at most . Up to our
knowledge, this is the first example of the design of a compact silent
self-stabilizing algorithm constructing, and stabilizing on a subset of optimal
solutions to a natural problem for which there are no time-efficient
proof-labeling schemes. On our way to design our algorithm, we establish a set
of independent results that may have interest on their own. In particular, we
describe a new space-optimal silent self-stabilizing spanning tree
construction, stabilizing on \emph{any} spanning tree, in rounds, and
using just \emph{one} additional bit compared to the size of the labels used to
certify trees. We also design a silent loop-free self-stabilizing algorithm for
transforming a tree into another tree. Last but not least, we provide a silent
self-stabilizing algorithm for computing and certifying the labels of a
NCA-labeling scheme
An Algorithmic Framework for Labeling Network Maps
Drawing network maps automatically comprises two challenging steps, namely
laying out the map and placing non-overlapping labels. In this paper we tackle
the problem of labeling an already existing network map considering the
application of metro maps. We present a flexible and versatile labeling model.
Despite its simplicity, we prove that it is NP-complete to label a single line
of the network. For a restricted variant of that model, we then introduce an
efficient algorithm that optimally labels a single line with respect to a given
weighting function. Based on that algorithm, we present a general and
sophisticated workflow for multiple metro lines, which is experimentally
evaluated on real-world metro maps.Comment: Full version of COCOON 2015 pape
A note on the primal-dual method for the semi-metric labeling problem
Recently, Komodakis et al. [6] developed the FastPD
algorithm for the semi-metric labeling problem, which extends
the expansion move algorithm of Boykov et al. [2]. We
present a slightly different derivation of the FastPD method
- …
