202,244 research outputs found

    Parsimonious Labeling

    Get PDF
    We propose a new family of discrete energy minimization problems, which we call parsimonious labeling. Specifically, our energy functional consists of unary potentials and high-order clique potentials. While the unary potentials are arbitrary, the clique potentials are proportional to the {\em diversity} of set of the unique labels assigned to the clique. Intuitively, our energy functional encourages the labeling to be parsimonious, that is, use as few labels as possible. This in turn allows us to capture useful cues for important computer vision applications such as stereo correspondence and image denoising. Furthermore, we propose an efficient graph-cuts based algorithm for the parsimonious labeling problem that provides strong theoretical guarantees on the quality of the solution. Our algorithm consists of three steps. First, we approximate a given diversity using a mixture of a novel hierarchical PnP^n Potts model. Second, we use a divide-and-conquer approach for each mixture component, where each subproblem is solved using an effficient α\alpha-expansion algorithm. This provides us with a small number of putative labelings, one for each mixture component. Third, we choose the best putative labeling in terms of the energy value. Using both sythetic and standard real datasets, we show that our algorithm significantly outperforms other graph-cuts based approaches

    Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction

    Full text link
    Motivated by applications to sensor networks, as well as to many other areas, this paper studies the construction of minimum-degree spanning trees. We consider the classical node-register state model, with a weakly fair scheduler, and we present a space-optimal \emph{silent} self-stabilizing construction of minimum-degree spanning trees in this model. Computing a spanning tree with minimum degree is NP-hard. Therefore, we actually focus on constructing a spanning tree whose degree is within one from the optimal. Our algorithm uses registers on O(logn)O(\log n) bits, converges in a polynomial number of rounds, and performs polynomial-time computation at each node. Specifically, the algorithm constructs and stabilizes on a special class of spanning trees, with degree at most OPT+1OPT+1. Indeed, we prove that, unless NP == coNP, there are no proof-labeling schemes involving polynomial-time computation at each node for the whole family of spanning trees with degree at most OPT+1OPT+1. Up to our knowledge, this is the first example of the design of a compact silent self-stabilizing algorithm constructing, and stabilizing on a subset of optimal solutions to a natural problem for which there are no time-efficient proof-labeling schemes. On our way to design our algorithm, we establish a set of independent results that may have interest on their own. In particular, we describe a new space-optimal silent self-stabilizing spanning tree construction, stabilizing on \emph{any} spanning tree, in O(n)O(n) rounds, and using just \emph{one} additional bit compared to the size of the labels used to certify trees. We also design a silent loop-free self-stabilizing algorithm for transforming a tree into another tree. Last but not least, we provide a silent self-stabilizing algorithm for computing and certifying the labels of a NCA-labeling scheme

    An Algorithmic Framework for Labeling Network Maps

    Full text link
    Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model. Despite its simplicity, we prove that it is NP-complete to label a single line of the network. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given weighting function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.Comment: Full version of COCOON 2015 pape

    A note on the primal-dual method for the semi-metric labeling problem

    Get PDF
    Recently, Komodakis et al. [6] developed the FastPD algorithm for the semi-metric labeling problem, which extends the expansion move algorithm of Boykov et al. [2]. We present a slightly different derivation of the FastPD method
    corecore