38,455 research outputs found

    The Radio Number of Grid Graphs

    Full text link
    The radio number problem uses a graph-theoretical model to simulate optimal frequency assignments on wireless networks. A radio labeling of a connected graph GG is a function f:V(G)→Z0+f:V(G) \to \mathbb Z_{0}^+ such that for every pair of vertices u,v∈V(G)u,v \in V(G), we have ∣f(u)−f(v)∣≥diam(G)+1−d(u,v)\lvert f(u)-f(v)\rvert \ge \text{diam}(G) + 1 - d(u,v) where diam(G)\text{diam}(G) denotes the diameter of GG and d(u,v)d(u,v) the distance between vertices uu and vv. Let span(f)\text{span}(f) be the difference between the greatest label and least label assigned to V(G)V(G). Then, the \textit{radio number} of a graph rn(G)\text{rn}(G) is defined as the minimum value of span(f)\text{span}(f) over all radio labelings of GG. So far, there have been few results on the radio number of the grid graph: In 2009 Calles and Gomez gave an upper and lower bound for square grids, and in 2008 Flores and Lewis were unable to completely determine the radio number of the ladder graph (a 2 by nn grid). In this paper, we completely determine the radio number of the grid graph Ga,bG_{a,b} for a,b>2a,b>2, characterizing three subcases of the problem and providing a closed-form solution to each. These results have implications in the optimization of radio frequency assignment in wireless networks such as cell towers and environmental sensors.Comment: 17 pages, 7 figure

    Enumerating planar locally finite Cayley graphs

    Full text link
    We characterize the set of planar locally finite Cayley graphs, and give a finite representation of these graphs by a special kind of finite state automata called labeling schemes. As a result, we are able to enumerate and describe all planar locally finite Cayley graphs of a given degree. This analysis allows us to solve the problem of decision of the locally finite planarity for a word-problem-decidable presentation. Keywords: vertex-transitive, Cayley graph, planar graph, tiling, labeling schemeComment: 19 pages, 6 PostScript figures, 12 embedded PsTricks figures. An additional file (~ 438ko.) containing the figures in appendix might be found at http://www.labri.fr/Perso/~renault/research/pages.ps.g
    • …
    corecore