3,557 research outputs found

    Label optimal regret bounds for online local learning

    Get PDF
    We resolve an open question from (Christiano, 2014b) posed in COLT'14 regarding the optimal dependency of the regret achievable for online local learning on the size of the label set. In this framework the algorithm is shown a pair of items at each step, chosen from a set of nn items. The learner then predicts a label for each item, from a label set of size LL and receives a real valued payoff. This is a natural framework which captures many interesting scenarios such as collaborative filtering, online gambling, and online max cut among others. (Christiano, 2014a) designed an efficient online learning algorithm for this problem achieving a regret of O(nL3T)O(\sqrt{nL^3T}), where TT is the number of rounds. Information theoretically, one can achieve a regret of O(nlog⁑LT)O(\sqrt{n \log L T}). One of the main open questions left in this framework concerns closing the above gap. In this work, we provide a complete answer to the question above via two main results. We show, via a tighter analysis, that the semi-definite programming based algorithm of (Christiano, 2014a), in fact achieves a regret of O(nLT)O(\sqrt{nLT}). Second, we show a matching computational lower bound. Namely, we show that a polynomial time algorithm for online local learning with lower regret would imply a polynomial time algorithm for the planted clique problem which is widely believed to be hard. We prove a similar hardness result under a related conjecture concerning planted dense subgraphs that we put forth. Unlike planted clique, the planted dense subgraph problem does not have any known quasi-polynomial time algorithms. Computational lower bounds for online learning are relatively rare, and we hope that the ideas developed in this work will lead to lower bounds for other online learning scenarios as well.Comment: 13 pages; Changes from previous version: small changes to proofs of Theorems 1 & 2, a small rewrite of introduction as well (this version is the same as camera-ready copy in COLT '15

    Distributed Online Big Data Classification Using Context Information

    Full text link
    Distributed, online data mining systems have emerged as a result of applications requiring analysis of large amounts of correlated and high-dimensional data produced by multiple distributed data sources. We propose a distributed online data classification framework where data is gathered by distributed data sources and processed by a heterogeneous set of distributed learners which learn online, at run-time, how to classify the different data streams either by using their locally available classification functions or by helping each other by classifying each other's data. Importantly, since the data is gathered at different locations, sending the data to another learner to process incurs additional costs such as delays, and hence this will be only beneficial if the benefits obtained from a better classification will exceed the costs. We model the problem of joint classification by the distributed and heterogeneous learners from multiple data sources as a distributed contextual bandit problem where each data is characterized by a specific context. We develop a distributed online learning algorithm for which we can prove sublinear regret. Compared to prior work in distributed online data mining, our work is the first to provide analytic regret results characterizing the performance of the proposed algorithm

    Online Local Learning via Semidefinite Programming

    Full text link
    In many online learning problems we are interested in predicting local information about some universe of items. For example, we may want to know whether two items are in the same cluster rather than computing an assignment of items to clusters; we may want to know which of two teams will win a game rather than computing a ranking of teams. Although finding the optimal clustering or ranking is typically intractable, it may be possible to predict the relationships between items as well as if you could solve the global optimization problem exactly. Formally, we consider an online learning problem in which a learner repeatedly guesses a pair of labels (l(x), l(y)) and receives an adversarial payoff depending on those labels. The learner's goal is to receive a payoff nearly as good as the best fixed labeling of the items. We show that a simple algorithm based on semidefinite programming can obtain asymptotically optimal regret in the case where the number of possible labels is O(1), resolving an open problem posed by Hazan, Kale, and Shalev-Schwartz. Our main technical contribution is a novel use and analysis of the log determinant regularizer, exploiting the observation that log det(A + I) upper bounds the entropy of any distribution with covariance matrix A.Comment: 10 page
    • …
    corecore