1,346 research outputs found

    Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD

    Get PDF
    <p>Background De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking.</p> <p>Methods Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6.</p> <p>Results The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p <0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p <0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar parenchyma (p < 0.001) in patients with advanced COPD compared with never-smoking controls. A similar increase in lymphatic D6 immunoreactivity was observed in bronchioles (p <0.05) and alveolar parenchyma (p < 0.01).</p> <p>Conclusions This study shows that severe stages of COPD is associated with increased numbers of alveolar lymphatic vessels and a change in lymphatic vessel phenotype in major peripheral lung compartments. This novel histopathological feature is suggested to have important implications for distal lung immune cell traffic in advanced COPD.</p&gt

    Reconstruction of lymphatic vessels in the mouse tail after cupping therapy

    Get PDF
    Background: The aim of the study was to investigate the regulatory mechanism of local lymphatic reconstruction after cupping therapy in a mouse model. Materials and methods: The lymphatic reconstruction process in the mouse tail after cupping therapy as well as the expression levels of the vascular endothelial identification molecule CD34, prospero homeobox protein 1 (PROX1), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) were investigated for a duration of 4 days through immunohistochemistry experiments. Results: On day 1 after cupping therapy, the CD34+ and LYVE-1+ cell densities were significantly increased, and the formed CD34+LYVE-1+ tubular structure started to express PROX1. This was followed by a decrease in both the CD34+ and LYVE-1+ stem cell densities to basal levels on the second day after cupping therapy. Both the CD34+ and LYVE-1+ cell densities subsequently increased again on the third day after cupping therapy. The increase in the LYVE-1+ density was accompanied by tubular structure formation, which is characteristic of lymphangiogenesis. In addition, the colocalisation of CD34+ and LYVE-1+ cells by immunohistochemistry suggests that the CD34+ stem cells differentiated into new lymphatic endothelial cells. Conclusions: Our findings indicate that the mechanism underlying the therapeutic effect of cupping therapy involves upregulation of vascular and lymphatic endothelial markers (CD34+, LYVE-1+, and CD34+LYVE-1+) in local tissues, which in turn promotes local new lymphatic vessel formation through the expression of PROX1

    Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis.

    Get PDF
    Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose

    Conjunctival Lymphatic Response to Corneal Inflammation in Mice

    Get PDF
    Due to its unique characteristics, the cornea has been widely used for vascular research. However, it has never been studied whether lymphatic vessels in the conjunctiva, its neighboring tissue, are affected by corneal lymphangiogenesis (LG). The purpose of this study was to investigate whether the distribution pattern of conjunctival lymphatic vessels changes during LG using a standardized two-suture placement model. Our data from immunofluorescent microscopic studies demonstrate, for the first time, that conjunctival lymphatic vessels were more distributed in the nasal side under both normal and inflamed conditions. Additionally, under the inflamed condition, conjunctival lymphatic vessels showed a higher density and more branching points, indicating that LG occurs in the conjunctiva in response to corneal inflammation. This study not only provides novel insights into lymphatic events in the ocular surface but also offers new guidelines for developing therapeutic strategies to treat lymphatic diseases at related sites

    Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver- Re-evaluations of microlymphatic abnormalities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From the morphological appearance, it was impossible to distinguish terminal portal venules from small lymphatic vessels in the portal tract even using histochemical microscopic techniques. Recently, D2-40 was found to be expressed at a high level in lymphatic endothelial cells (LECs). This study was undertaken to elucidate hepatic lymphatic vessels during progression of cirrhosis by examining the expression of D2-40 in LECs.</p> <p>Methods</p> <p>Surgical wedge biopsy specimens were obtained from non-cirrhotic portions of human livers (normal control) and from cirrhotic livers (LC) (Child A-LC and Child C-LC). Immunohistochemical (IHC), Western blot, and immunoelectron microscopic studies were conducted using D2-40 as markers for lymphatic vessels, as well as CD34 for capillary blood vessels.</p> <p>Results</p> <p>Imunostaining of D2-40 produced a strong reaction in lymphatic vessels only, especially in Child C-LC. It was possible to distinguish the portal venules from the small lymphatic vessels using D-40. Immunoelectron microscopy revealed strong D2-40 expression along the luminal and abluminal portions of the cell membrane of LECs in Child C-LC tissue.</p> <p>Conclusion</p> <p>It is possible to distinguish portal venules from small lymphatic vessels using D2-40 as marker. D2-40- labeling in lymphatic capillary endothelial cells is related to the degree of fibrosis in cirrhotic liver.</p

    Hematopoietic Stem Cells Contribute to Lymphatic Endothelium

    Get PDF
    Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC). mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system

    Beyond a Passive Conduit: Implications of Lymphatic Biology for Kidney Diseases

    Get PDF
    The kidney contains a network of lymphatic vessels that clear fluid, small molecules, and cells from the renal interstitium. Through modulating immune responses and via crosstalk with surrounding renal cells, lymphatic vessels have been implicated in the progression and maintenance of kidney disease. In this Review, we provide an overview of the development, structure, and function of lymphatic vessels in the healthy adult kidney. We then highlight the contributions of lymphatic vessels to multiple forms of renal pathology, emphasizing CKD, transplant rejection, and polycystic kidney disease and discuss strategies to target renal lymphatics using genetic and pharmacologic approaches. Overall, we argue the case for lymphatics playing a fundamental role in renal physiology and pathology and treatments modulating these vessels having therapeutic potential across the spectrum of kidney disease

    Confocal Imaging: Blood and Lymphatic Capillaries

    Get PDF
    Traditional imaging techniques are quite limited for the study of the relationship between blood vessels and lymphatic vessels. Therefore, a new imaging technique is required based on blood vessel and lymphatic endothelial-specific molecular markers. In this short report, vascular molecular markers are reviewed and a new molecular imaging technique for blood vessel and lymphatic co-staining is introduced

    Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves.

    Get PDF
    BACKGROUND Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler

    Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice

    Get PDF
    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin — 1 surgical and the other genetic — to quantitatively track RCT following injection of [3H]-cholesterol–loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti–VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis
    corecore