2 research outputs found

    LTE uplink extension in TV white spaces

    No full text
    Dynamic Spectrum Access (DSA)/Cognitive Radio (CR) represents a promising and versatile concept to improve the efficiency of spectrum exploitation by allowing unlicensed users to opportunistically access underutilised licensed bands, provided that no harmful interference is caused to the legitimate (licensed) users of the spectrum. This revolutionary spectrum access paradigm can be exploited not only to deploy new radio systems and technologies in the already allocated spectrum, but also to increase the capacity of existing systems. A good example of this application is the extension of Long Term Evolution (LTE) cellular systems in Television (TV) white spaces (i.e., TV channels not used in a certain region), which has received significant attention. Most of the existing studies, however, have focused on the extension of the LTE downlink component. By contrast, this work complements previous studies by considering the LTE uplink component in TV white spaces. By means of system-level simulations, this work analyses the conditions under which such coexistence is feasible and the underlying implications. © VDE VERLAG GMBH

    LTE uplink extension in TV white spaces

    No full text
    Dynamic Spectrum Access (DSA)/Cognitive Radio (CR) represents a promising and versatile concept to improve the efficiency of spectrum exploitation by allowing unlicensed users to opportunistically access underutilised licensed bands, provided that no harmful interference is caused to the legitimate (licensed) users of the spectrum. This revolutionary spectrum access paradigm can be exploited not only to deploy new radio systems and technologies in the already allocated spectrum, but also to increase the capacity of existing systems. A good example of this application is the extension of Long Term Evolution (LTE) cellular systems in Television (TV) white spaces (i.e., TV channels not used in a certain region), which has received significant attention. Most of the existing studies, however, have focused on the extension of the LTE downlink component. By contrast, this work complements previous studies by considering the LTE uplink component in TV white spaces. By means of system-level simulations, this work analyses the conditions under which such coexistence is feasible and the underlying implications. © VDE VERLAG GMBH
    corecore