30,359 research outputs found

    On Symmetric and Asymmetric LSHs for Inner Product Search

    Full text link
    We consider the problem of designing locality sensitive hashes (LSH) for inner product similarity, and of the power of asymmetric hashes in this context. Shrivastava and Li argue that there is no symmetric LSH for the problem and propose an asymmetric LSH based on different mappings for query and database points. However, we show there does exist a simple symmetric LSH that enjoys stronger guarantees and better empirical performance than the asymmetric LSH they suggest. We also show a variant of the settings where asymmetry is in-fact needed, but there a different asymmetric LSH is required.Comment: 11 pages, 3 figures, In Proceedings of The 32nd International Conference on Machine Learning (ICML

    Practical and Optimal LSH for Angular Distance

    Get PDF
    We show the existence of a Locality-Sensitive Hashing (LSH) family for the angular distance that yields an approximate Near Neighbor Search algorithm with the asymptotically optimal running time exponent. Unlike earlier algorithms with this property (e.g., Spherical LSH [Andoni, Indyk, Nguyen, Razenshteyn 2014], [Andoni, Razenshteyn 2015]), our algorithm is also practical, improving upon the well-studied hyperplane LSH [Charikar, 2002] in practice. We also introduce a multiprobe version of this algorithm, and conduct experimental evaluation on real and synthetic data sets. We complement the above positive results with a fine-grained lower bound for the quality of any LSH family for angular distance. Our lower bound implies that the above LSH family exhibits a trade-off between evaluation time and quality that is close to optimal for a natural class of LSH functions.Comment: 22 pages, an extended abstract is to appear in the proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS 2015

    Solving Gauss's Law on Digital Quantum Computers with Loop-String-Hadron Digitization

    Full text link
    We show that using the loop-string-hadron (LSH) formulation of SU(2) lattice gauge theory (arXiv:1912.06133) as a basis for digital quantum computation easily solves an important problem of fundamental interest: implementing gauge invariance (or Gauss's law) exactly. We first discuss the structure of the LSH Hilbert space in dd spatial dimensions, its truncation, and its digitization with qubits. Error detection and mitigation in gauge theory simulations would benefit from physicality "oracles,'"so we decompose circuits that flag gauge invariant wavefunctions. We then analyze the logical qubit costs and entangling gate counts involved with the protocols. The LSH basis could save or cost more qubits than a Kogut-Susskind-type representation basis, depending on how the bases are digitized as well as the spatial dimension. The numerous other clear benefits encourage future studies into applying this framework.Comment: 10 pages, 9 figures. v3: Journal version. A few added remarks and plots regarding qubit cost
    corecore